[Math] An example of bounded linear operator

functional-analysisoperator-theory

Define $\ell^p = \{ x (= \{ x_n \}_{-\infty}^\infty) \;\; | \;\; \| x \|_{\ell^p} < \infty \} $ with $\| x \|_{\ell^p} = ( \sum_{n=-\infty}^\infty \|x_n \|^p )^{1/p} $ if $ 1 \leqslant p <\infty $, and $ \| x \|_{\ell^p} = \sup _{n} | x_n | $ if $ p = \infty $. Let $k = \{ k_n \}_{-\infty}^\infty \in \ell^1 $.

Now define the operator $T$ , for $x \in \ell^p$ , $$ (Tx)_n = \sum_{j=-\infty}^\infty k_{n-j} x_j \;\;(n \in \mathbb Z).$$ Then prove that $T\colon\ell^p \to\ell^p$ is a bounded, linear operator with $$ \| Tx \|_{\ell^p} \leqslant \| k \|_{\ell^1} \| x \|_{\ell^p}. $$

Would you give me a proof for this problem?

Best Answer

In the first comment I suggested the following strategy: write $T=\sum_j T_j$, where $T_j$ is a linear operator defined by $T_jx=\{k_jx_{n-j}\}$. You should check that this is indeed correct, i.e., summing $T_j$ over $j$ indeed gives $T$. Next, show that $\|T_j\|=|k_j|$ using the definition of the operator norm. Finally, use the triangle inequality $\|Tx\|_{\ell^p}\le \sum_j \|T_jx\|_{\ell_p}$.