Calculus – Arctan Integral from 0 to Infinity

calculusdefinite integralsintegrationreal-analysis

According to Mathematica, we have that

$$\int_0^{\infty } \frac{\arctan(x)}{x \left(x^2+1\right)^5} \, dx=\pi \left(\frac{\log (2)}{2}-\frac{1321}{6144}\right)$$
that frankly speaking looks pretty nice.

However Mathematica shows that

$$\int \frac{\arctan(x)}{x \left(x^2+1\right)^5} \, dx$$
$$=-\frac{1}{2} i \text{Li}_2\left(e^{2 i \tan ^{-1}(x)}\right)-\frac{1}{2} i \tan ^{-1}(x)^2+\tan ^{-1}(x) \log \left(1-e^{2 i \tan ^{-1}(x)}\right)-\frac{65}{256} \sin \left(2 \tan ^{-1}(x)\right)-\frac{23 \sin \left(4 \tan ^{-1}(x)\right)}{1024}-\frac{5 \sin \left(6 \tan ^{-1}(x)\right)}{2304}-\frac{\sin \left(8 \tan ^{-1}(x)\right)}{8192}+\frac{65}{128} \tan ^{-1}(x) \cos \left(2 \tan ^{-1}(x)\right)+\frac{23}{256} \tan ^{-1}(x) \cos \left(4 \tan ^{-1}(x)\right)+\frac{5}{384} \tan ^{-1}(x) \cos \left(6 \tan ^{-1}(x)\right)+\frac{\tan ^{-1}(x) \cos \left(8 \tan ^{-1}(x)\right)}{1024}$$

and this form doesn't look that nice.

Having given the nice form of the closed form I wonder if we can find a very nice and simple way of getting the answer. What do you think?

A supplementary question:

$$\int_0^{\infty } \frac{\arctan^2(x)}{x \left(x^2+1\right)^5} \, dx=\frac{55}{108}-\frac{1321}{12288}\pi^2+\frac{\pi^2}{4} \log (2)-\frac{7 }{8}\zeta (3)$$

Best Answer

Here is another solution: Let $(I_n)$ by

$$ I_n = \int_{0}^{\infty} \frac{\arctan x}{x(1+x^2)^n} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\theta}{\sin\theta} \cos^{2n-1}\theta \, d\theta. $$

Then by a simple calculation,

$$ I_n - I_{n+1} = \int_{0}^{\frac{\pi}{2}} \theta \sin\theta \cos^{2n-1}\theta \, d\theta = \frac{1}{2n} \int_{0}^{\frac{\pi}{2}} \cos^{2n}\theta \, d\theta. $$

Since $I_n \to 0$ as $n \to \infty$, we find that

$$ I_n = \sum_{k=n}^{\infty} \frac{1}{2k} \int_{0}^{\frac{\pi}{2}} \cos^{2k}\theta \, d\theta. $$

Splitting the summation as $\sum_{k=n}^{\infty} = \sum_{k=1}^{\infty} - \sum_{k=1}^{n-1}$, we find that

$$ I_n = \frac{\pi}{2}\left( \log 2 - \sum_{k=1}^{n-1} \frac{1}{2k} \frac{(2k-1)!!}{(2k)!!} \right), $$

where $n!!$ denotes the double factorial.


Edit 1. In general, we have

$$ \int_{0}^{\infty} \frac{\arctan^s x}{x(1+x^2)^{n+1}} \, dx = \int_{0}^{\frac{\pi}{2}} \theta^s \cot \theta \, d\theta - \sum_{k=1}^{n} \int_{0}^{\frac{\pi}{2}} \theta^s \sin\theta \cos^{2k-1}\theta \, d\theta. \tag{1} $$

Currently I have no idea how to obtain a simple formula for the following integral

$$ \int_{0}^{\frac{\pi}{2}} \theta^s \sin\theta \cos^{2k-1}\theta \, d\theta, \tag{2} $$

even when $s = 2$. On the other hand, for any $s > 0$ and $N \geq \lfloor s/2 \rfloor$ we have

\begin{align*} \int_{0}^{\frac{\pi}{2}} \theta^s \cot \theta \, d\theta &= 2^{-s}\cos\left(\frac{\pi s}{2}\right)\Gamma(1+s)\zeta(1+s) \\ &\quad + \left(\frac{\pi}{2}\right)^s \sum_{k=0}^{N} (-1)^k \pi^{-2k} \frac{\Gamma(2k-s)}{\Gamma(-s)} \eta(2k+1) \\ &\quad + \frac{(-1)^{N+1}}{2^s \Gamma(-s)} \int_{0}^{\infty} \frac{t^{2N+1-s}}{1+t^2} \left( \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{1+s}} e^{-\pi n t} \right) \, dt, \end{align*}

where $\eta(s)$ denotes the Dirichlet eta function. (My solution is somewhat involved, so I will post later if it seems useful to our problem.) In particular, when $s$ is a positive integer, then the integral part vanishes and the formula becomes much simpler. Thus the formula (*) gives a closed form as long as we can figure out the integral (2).

Example 1. For example, when $s = 2$ then we can use $N = 1$ and then \begin{align*} \int_{0}^{\frac{\pi}{2}} \theta^2 \cot \theta \, d\theta &= -\frac{1}{2}\zeta(3) + \frac{\pi^2}{4} \log 2 - \frac{1}{2}\eta(3) \\ &= \frac{\pi^2}{4}\log 2 - \frac{7}{8}\zeta(3). \end{align*} Since we can figure out the integral (2) for $s = 2$ and $k = 1, \cdots, 4$, we easily obtain OP's last identity.

Here is another example:

Example 2. Using the formula with $s = 6$, we can check that \begin{align*} \int_{0}^{\infty} \frac{\arctan^6 x}{x(1+x^2)^3} \, dx &= \frac{\pi^6}{64} \log 2 -\frac{45 \pi^4}{128} \zeta(3) + \frac{675 \pi^2}{128} \zeta(5) -\frac{5715}{256} \zeta(7) \\ &\quad - \frac{11 \pi^6}{2048} + \frac{705 \pi^4}{4096} - \frac{8595 \pi^2}{4096} + \frac{135}{16} \\ &\approx 0.0349464822054751922142122595622\cdots. \end{align*}