[Math] almost everywhere convergence vs uniform convergence

measure-theoryreal-analysis

Let $(\mathbb{R},\mathcal{L},m)$

Can someone explain to me why $f_{n}(x)=\chi_{(0,\frac{1}{n}]}$ converges almost everywhere to $0$ but not uniformly…

also why does $f_{n}(x)=n^{-1}\chi_{(0,n)}$ converge uniformly on $\mathbb{R}$?

Best Answer

(1) For any $x_0\in \mathbb{R}$, if $x_0\not\in (0,1]$ then $f_n(x_0)=0$ for all $n$; if $x_0\in (0,1]$ there exists $N$ such that when $n>N$ we have $x_0\not\in (0,\frac{1}{n}]$, and then $f_n(x_0)=0$. So $\lim_{n\to \infty}f_n(x)=0$ for all $x\in \mathbb{R}$. (2) For $\epsilon_0=\frac{1}{2}$, for any $N\in \mathbb{N}$, we have that $\frac{1}{N+2}\in (0, \frac{1}{N+1}]$, hence $|\chi_{(0,\frac{1}{N+1}]}(\frac{1}{N+2})-0|=1\geq \epsilon_0$. This means that $\chi_{(0,\frac{1}{n}]}$ does not uniformly converge t0 $0$. (3) Since $|n^{-1}\chi_{(0,n)}|\leq \frac{1}{n}$ for all $x\in \mathbb{R}$. Then $\frac{1}{n}\chi_{(0,n)}$ uniformly converges to $0$.