Complex Analysis – Ahlfors’ Proof of Gauss’ Formula

complex-analysisgamma function

He says:

Prove the formula of Gauss:
$$
(2\pi)^\frac{n-1}{2} \Gamma(z) = n^{z – \frac{1}{2}}\Gamma(z/n)\Gamma(\frac{z+1}{n})\cdots\Gamma(\frac{z+n-1}{n})
$$

This is an exercise out of Ahlfors.

By taking the logarithmic derivative, it's easy to show the left & right hand sides are the the same up to a multiplicative constant.

After that I'm lost. It's easy using another identity when $n$ is even to use induction. But when $n$ is odd I am lost.

It's obvious when $n$ is a power of 2.

Best Answer

Another common approach is to derive it from the limit definition of the gamma function. (See below.)

The multiplication formula can be written in the form

$$n^{nz-1/2} \prod_{k=0}^{n-1} \Gamma \left(z+\frac{k}{n} \right) = (\sqrt{2 \pi})^{n-1} \Gamma(nz)$$

Using the limit definition of the gamma function, we have

$$ \Gamma \left(z +\frac{k}{n} \right) = \lim_{m \to \infty} \frac{m! \ m^{z+\frac{k}{n}-1}}{(z+\frac{k}{n})(z+\frac{k}{n}+1) \cdots (z+\frac{k}{n} + m -1)}$$

Then using Stirling's formula, we get

$$ \begin{align} \Gamma \left(z+\frac{k}{n} \right) &= \lim_{m \to \infty} \frac{\sqrt{2 \pi m} (\frac{m}{e})^m m^{z+\frac{k}{n}-1}}{(z+\frac{k}{n})(z+\frac{k}{n}+1) \cdots (z+\frac{k}{n} + m -1)} \\ &=\lim_{m \to \infty} \frac{\sqrt{2 \pi} (\frac{mn}{e})^m m^{z+\frac{k}{n}-1/2}}{(nz+k)(nz+k+n) \cdots (nz+k + mn -n)} \end{align}$$

So

$$ n^{nz-1/2} \prod_{k=0}^{n-1} \Gamma \left(z+\frac{k}{n} \right) $$

$$ = n^{nz-1/2}\lim_{m \to \infty}\frac{(\sqrt{2 \pi})^{n} (\frac{mn}{e})^{mn} m^{nz-n/2} m^{\frac{1}{n} \sum_{k=1}^{n-1} k}}{(nz)(nz+1)\cdots (nz+n-1)(nz+n) \cdots (nz+mn-n)\cdots(nz+mn-1)} $$

$$ = \lim_{m \to \infty} \frac{(\sqrt{2 \pi})^{n} (\frac{mn}{e})^{mn} (mn)^{nz-1/2}}{(nz)(nz+1)\cdots (nz+n-1)(nz+n) \cdots (nz+mn-n) \cdots(nz+mn-1)} $$

Replacing $mn$ with $m$ shouldn't change the value of the limit (I think).

Therefore,

$$ \begin{align} n^{nz-1/2} \prod_{k=0}^{n-1} \Gamma \left(z+\frac{k}{n} \right) &=\lim_{m \to \infty} \frac{(\sqrt{2 \pi})^{n} (\frac{m}{e})^{m} m^{nz-1/2}}{(nz)(nz+1)\cdots(nz+m-1)} \\ &=\lim_{m \to \infty} \frac{(\sqrt{2 \pi})^{n-1}m! \ m^{nz-1}}{(nz)(nz+1)\cdots(nz+m-1)} \\ &= (\sqrt{2\pi})^{n-1}\Gamma(nz) \end{align}$$

EDIT:

Wikipedia states that the limit definition is

$$ \Gamma(t) = \lim_{n \to \infty} \frac{n! \ n^{t}}{t(t+1) \cdots (t+n)}$$

But notice that

$$ \Gamma(t-1) = \frac{\Gamma(t)}{t-1} = \lim_{n \to \infty} \frac{n! \ n^{t-1}}{(t-1)t \ldots (t+n-1)}$$

$$\implies \Gamma(t) = \lim_{n \to \infty} \frac{n! \ n^{t-1}}{t(t+1) \ldots (t+n-1)}$$

Related Question