Calculus – Series for the Golden Ratio

calculusgolden ratiosequences-and-series

Question: Can we show that $$\phi=\frac{1}{2}+\frac{11}{2}\sum_{n=0}^\infty\frac{(2n)!}{5^{3n+1}(n!)^2} $$; where $\phi={1+\sqrt{5} \above 1.5pt 2}$ is the golden ratio ?


Some background and motivation:

Wikipedia only provides one series for the golden ratio – see also the link in the comment by @Zacky. I became curious if I could construct another series for the Golden Ratio based on a slight modification to a known series representation of the $\sqrt{2}.$ At first I considered $$\sqrt{2}=\sum_{n=0}^\infty(-1)^{n+1}\frac{(2n+1)!!}{(2n)!!}$$; which series can be accelerated via an Euler transform to yield $$\sqrt{2}=\sum_{n=0}^\infty(-1)^{n+1}\frac{(2n+1)!!}{2^{3n+1}(n!)^2}$$ This last series became the impetus to try and and get to the Golden ratio. Through trial and error I stumbled upon
$$\frac{\sqrt{5}}{11}=\sum_{n=0}^\infty\frac{(2n)!}{5^{3n+1}(n!)^2}$$

Best Answer

First of all note that

$$\frac1{\sqrt{1-4x}}=\sum_{n=0}^{\infty}\binom{2n}n x^n$$

Lets rewrite your sum as the following

$$\sum_{n=0}^\infty\frac{(2n)!}{5^{3n+1}(n!)^2}=\frac15\sum_{n=0}^\infty\binom{2n}n\left(\frac1{5^3}\right)^n=\frac15\frac1{\sqrt{1-\left(\frac4{5^3}\right)}}=\frac{\sqrt 5}{11}$$

And therefore you can correctly conclude that

$$\frac{1}{2}+\frac{11}{2}\sum_{n=0}^\infty\frac{(2n)!}{5^{3n+1}(n!)^2}=\frac12+\frac{11}2\frac{\sqrt 5}{11}=\frac{1+\sqrt 5}2$$

$$\therefore~\frac{1}{2}+\frac{11}{2}\sum_{n=0}^\infty\frac{(2n)!}{5^{3n+1}(n!)^2}=\phi$$