Linear Algebra – Rank-One Matrix as the Product of Two Vectors

linear algebramatricesmatrix-ranktransposevector-spaces

Let $A$ be an $n\times m$ matrix. Prove that $\operatorname{rank} (A) = 1$ if and only if there exist column vectors $v \in \mathbb{R}^n$ and $w \in \mathbb{R}^m$ such that $A=vw^t$.


Progress: I'm going back and forth between using the definitions of rank: $\operatorname{rank} (A) = \dim(\operatorname{col}(A)) = \dim(\operatorname{row}(A))$ or using the rank theorem that says $ \operatorname{rank}(A)+\operatorname{nullity}(A) = m$. So in the second case I have to prove that $\operatorname{nullity}(A)=m$-1

Best Answer

Hints:

$A=\mathbf v\mathbf w^T\implies\operatorname{rank}A=1$ should be pretty easy to prove directly. Multiply a vector in $\mathbb R^m$ by $A$ and see what you get.

For the other direction, think about what $A$ does to the basis vectors of $\mathbb R^m$ and what this means about the columns of $A$.


Solution

Suppose $A=\mathbf v\mathbf w^T$. If $\mathbf u\in\mathbb R^m$, then $A\mathbf u=\mathbf v\mathbf w^T\mathbf u=(\mathbf u\cdot\mathbf w)\mathbf v$. Thus, $A$ maps every vector in $\mathbb R^m$ to a scalar multiple of $\mathbf v$, hence $\operatorname{rank}A=\dim\operatorname{im}A=1$.

Now, assume $\operatorname{rank}A=1$. Then for all $\mathbf u\in\mathbb R^m$, $A\mathbf u=k\mathbf v$ for some fixed $\mathbf v\in\mathbb R^n$. In particular, this is true for the basis vectors of $\mathbb R^m$, so every column of $A$ is a multiple of $\mathbf v$. That is, $$ A=\pmatrix{w_1\mathbf v & w_2\mathbf v & \cdots & w_m\mathbf v}=\mathbf v\pmatrix{w_1&w_2&\cdots&w_m}=\mathbf v\mathbf w^T. $$