[Math] A question concerning fundamental groups and whether a map is null-homotopic.

algebraic-topologyhomotopy-theory

Is it true that if $X$ and $Y$ are topological spaces, and $f:X \rightarrow Y$ is a continuous map and the induced group homomorphism $\pi_1(f):\pi_1(X) \rightarrow \pi_1(Y)$ is the trivial homomorphism, then we have that $f$ is null-homotopic?

Best Answer

Take $X=S^{2}$, $Y=S^{2}$, and the map $f(x)=-x$. This map has degree $-1 \neq 0$, therefore it is not nullhomotopic. However, $\pi_{1} (S^{2})$ is trivial, so the induced map will be between trivial groups, and is thus trivial.

The claim you're making is too strong because it asserts that whenever $Y$ is simply connected, then any continuous map into $Y$ is null homotopic.