Differential Geometry – Question About Killing Vector and Riemann Curvature Tensor

differential-geometry

In Sean Carroll's Spacetime and Geometry, a formula is given as
$${\nabla _\mu }{\nabla _\sigma }{K^\rho } = {R^\rho }_{\sigma \mu \nu }{K^\nu },$$

where $K^\mu$ is a Killing vector satisfying Killing's equation ${\nabla _\mu }{K_\nu } +{\nabla _\nu }{K_\mu }=0$ and the convention of Riemann curvature tensor is

$$\left[\nabla_{\mu},\nabla_{\nu}\right]V^{\rho}={R^\rho}_{\sigma\mu\nu}V^{\sigma}.$$

So how to prove the this formula (the connection is Levi-Civita)?

Best Answer

Permit me the use of Latin indices instead of Greek indices and the convention $\nabla_a K_b=K_{b;a} $. So we wish to prove $\newcommand{\Tud}[3]{{#1}^{#2}_{\phantom{#2}{#3}}}$ $$\Tud{K}{a}{;b c} = \Tud{R}{a}{b c d} K^d$$ where $$\Tud{V}{a}{;b c} - \Tud{V}{a}{;c b} = \Tud{R}{a}{d c b} V^d$$ and $$K_{a ; b} + K_{b ; a} = 0$$

Differentiating the last equation, we get $$K_{a ; b c} + K_{b ; a c} = 0$$ so, relabelling and summing, $$K_{a ; b c} + K_{b ; a c} - K_{b ; c a} - K_{c ; b a} + K_{c ; a b} + K_{a ; c b} = 0$$ hence, $$K_{a; b c} + K_{a ; c b} = R_{b d a c} K^d + R_{c d a b} K^d$$ By the interchange symmetry $R_{a b c d} = R_{c d a b}$, and raising indices, we get $$\Tud{K}{a}{;b c} - \Tud{R}{a}{b c d} K^d = -(\Tud{K}{a}{;c b} - \Tud{R}{a}{c b d} K^d)$$

On the other hand, by the first Bianchi identity and antisymmetry, we have $$\Tud{R}{a}{d c b} = \Tud{R}{a}{b c d} + \Tud{R}{a}{c d b}$$ Hence we get $$\Tud{K}{a}{;b c} = \Tud{K}{a}{; c b} + \Tud{R}{a}{d c b} K^d = \Tud{K}{a}{;c b} + \Tud{R}{a}{b c d} K^d + \Tud{R}{a}{c d b} K^d$$ and therefore $$\Tud{K}{a}{;b c} - \Tud{R}{a}{b c d} K^d = \Tud{K}{a}{;c b} - \Tud{R}{a}{c b d} K^d$$ The conclusion follows.

Related Question