Calculus – Closed Form of a Complex Integral

calculusclosed-formdefinite integralsimproper-integralsintegration

This integral has been bugging me since yesterday:

$$\int_0^1\frac{\ln\ln\left({1}/{x}\right)}{x^2-x+1}\mathrm dx$$

I've tried substitution $y={1}/{x}$ and $e^y={1}/{x}$, but those didn't help much. Wolfram Alpha gives me result: $-0.67172$. Could anyone here please help me to obtain the closed form of the integral preferably (if possible) with elementary ways (high school methods)? Any help would be greatly appreciated. Thank you.

Best Answer

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ With $\ds{r \equiv {1 + \root{3}\ic \over 2} = \expo{\pi\ic/3}}$ \begin{align}&\color{#c00000}{ \int_{0}^{1}{\ln\pars{\ln\pars{1/x}} \over x^{2} - x + 1}\,\dd x} =\int_{0}^{1}{\ln\pars{\ln\pars{1/x}} \over \pars{x - r}\pars{x - r^{*}}}\,\dd x \\[3mm]&=\int_{0}^{1}\ln\pars{\ln\pars{1/x}} \pars{{1 \over x - r} - {1 \over x - r^{*}}}\,{1 \over r - r^{*}}\,\dd x \\[3mm] & = {1 \over \Im\pars{r}}\,\Im\int_{0}^{1} {\ln\pars{\ln\pars{1/x}} \over x - r}\,\dd x \end{align}

With $\ds{x \equiv \expo{-t}}$: \begin{align}&\color{#c00000}{ \int_{0}^{1}{\ln\pars{\ln\pars{1/x}} \over x^{2} - x + 1}\,\dd x} ={2\root{3} \over 3}\Im\int_{\infty}^{0}{\ln\pars{t} \over \expo{-t} - r} \,\pars{-\expo{-t}\,\dd t} \\[3mm]&=-\,{2\root{3} \over 3}\Im\bracks{{1 \over r}\int_{0}^{\infty} {\ln\pars{t}\expo{-t} \over 1 - \expo{-t}/r}\,\dd t} \\[3mm]&=-\,{2\root{3} \over 3}\Im\bracks{{1 \over r} \sum_{n = 1}^{\infty}{1 \over r^{n - 1}}\int_{0}^{\infty} \ln\pars{t}\expo{-nt}\,\dd t} \\[3mm]&=-\,{2\root{3} \over 3}\Im\lim_{\mu\ \to\ 0}\partiald{}{\mu}\bracks{ \sum_{n = 1}^{\infty}r^{-n}\int_{0}^{\infty}t^{\mu}\expo{-nt}\,\dd t} \\[3mm]&=-\,{2\root{3} \over 3}\Im\lim_{\mu\ \to\ 0}\partiald{}{\mu}\bracks{ \sum_{n = 1}^{\infty}{r^{-n} \over n^{\mu + 1}}\Gamma\pars{\mu + 1}} \\[3mm]&=-\,{2\root{3} \over 3}\Im\lim_{\mu\ \to\ 0}\partiald{}{\mu}\bracks{ \Gamma\pars{\mu + 1}{\rm Li}_{\mu + 1}\pars{r^{*}}} \\[3mm]&=-\,{2\root{3} \over 3}\Im\lim_{\mu\ \to\ 0}\partiald{}{\mu}\bracks{ \Gamma\pars{\mu + 1}{\rm Li}_{\mu + 1}\pars{\expo{-\pi\ic/3}}} \end{align}

$\ds{{\rm Li}_{1}\pars{z} = -\ln\pars{1 - z}}$. Derivatives of the PolyLogarithm, respect of the order, can be evaluated from its integral representation.

Also, see Hurwitz Zeta Function.