[Math] A Bernoulli number identity and evaluating $\zeta$ at even integers

bernoulli numbersriemann-zeta

Sometime back I made a claim here that the proof for $\zeta(4)$ can be extended to all even numbers.

I tried doing this but I face a stumbling block.

Let me explain the problem in detail here. I was trying to mimic Euler's proof for the Basel problem to evaluate $\zeta$ at all even integers and prove that $$\zeta(2n) = (-1)^{n+1} \frac{B_{2n} 2^{2n}}{2(2n)!} \pi^{2n} $$

Euler looks at the function whose zeros are at $\pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$.

In general, to evaluate $\zeta(2n)$, let us look at a function whose roots are $$\pm \xi_0 \pi, \pm \xi_1 \pi, \ldots \pm \xi_{n-1} \pi; \pm \xi_0 2\pi, \pm \xi_1 2\pi, \ldots, \pm \xi_{n-1} 2\pi; \pm \xi_0 3\pi, \pm \xi_1 3\pi, \ldots, \pm \xi_{n-1} 3\pi; \ldots$$
where $\xi_k = \exp \left( \dfrac{k \pi i}{n} \right)$, $k \in \{0,1,2,\ldots,n-1\}$.

Let $$p_{2n}(z) = \left(1 – \left(\frac{z}{\pi}\right)^{2n} \right) \times \left(1 – \left(\frac{z}{2 \pi}\right)^{2n} \right) \times \left(1 – \left(\frac{z}{3 \pi}\right)^{2n} \right) \times \cdots$$

The coefficient of $z^{2n}$ in $p_{2n}(z)$ is $$- \dfrac1{\pi^{2n}}\sum_{k=1}^{\infty} \dfrac1{k^{2n}} = – \dfrac{\zeta(2n)}{\pi^{2n}}$$

It is not hard to guess that $p_{2n}(z)$ is same as $$\prod_{k=0}^{n-1} \dfrac{\sin(z/\xi_k)}{(z/\xi_k)} = \exp \left( \dfrac{(n-1) \pi i}2\right) \left(\dfrac{\sin(z/\xi_0) \sin(z/\xi_1) \sin(z/\xi_2) \ldots \sin(z/\xi_{n-1})}{z^{n}} \right)$$

Now from the power series expansion of $\sin(z)$, we get that $$\dfrac{\sin(z/\xi_k)}{z/\xi_k} = \left(\sum_{\ell=0}^{\infty} \dfrac{(-1)^{\ell} z^{2 \ell}}{(2 \ell+1)! \xi_k^{2\ell}} \right)$$

Hence, we get that
$$\prod_{k=0}^{n-1} \dfrac{\sin(z/\xi_k)}{(z/\xi_k)} = \prod_{k=0}^{n-1} \left(\sum_{\ell=0}^{\infty} \dfrac{(-1)^{\ell} z^{2 \ell}}{(2 \ell+1)! \xi_k^{2\ell}} \right)$$

The coefficient of $z^{2n}$ in the product is given by
$$c(n) = \sum_{\overset{\ell_0 + \ell_1 + \cdots + \ell_{n-1} = n}{\ell_k \geq 0}} \prod_{k=0}^{n-1} \left( \dfrac{(-1)^{\ell_k}}{(2 \ell_k+1)! \xi_k^{2 \ell_k}} \right)$$

Assuming whatever I have done so far is correct, to complete the proof and conclude that
$$\zeta(2n) = (-1)^{n+1} \frac{B_{2n} 2^{2n}}{2(2n)!} \pi^{2n} $$
I need to prove the following claim

Claim:
$$\color{red}{B_{2n} = \dfrac{(2n)!}{2^{2n-1}}\sum_{\overset{\ell_0 + \ell_1 + \cdots + \ell_{n-1} = n}{\ell_k \geq 0}} \prod_{k=0}^{n-1} \left( \dfrac{1}{(2 \ell_k+1)! \xi_k^{2 \ell_k}} \right)}$$ where $\xi_k = \exp \left( \dfrac{k \pi i}{n} \right)$.

Is the above expression of the Bernoulli numbers a known result? If so, could someone point me to a proof of this result?

Best Answer

As far as I can tell, you have already proven your claim; you started with a function with the appropriate value for the coefficient of interest and then found an expression for that coefficient. Consequently that expression must be a Bernoulli number by construction. If for some reason you are after an alternative proof that the coefficient of $z^{2n}$ in the function:

$g(z)=2(-1)^n(2n)!2^{-2n}f(z)$,

where:

$f \left( z \right) =\prod _{k=0}^{n-1}\mathrm{sinc} \left( z \exp \left( -\dfrac{k \pi i}{n} \right)\right) $,

$\mathrm{sinc}(x)=\dfrac{\sin(x)}{x},$

is equal to the Bernoulli number $B(2n)$ then here's one...

First take the logarithm of $f(z)$:

$\ln(f \left( z \right)) =\sum _{k=0}^{n-1}\ln\left(\mathrm{sinc} \left( z \exp \left(- \dfrac{k \pi i}{n} \right)\right)\right)$.

Then use the product expansion of the sinc function:

$\mathrm{sinc} \left( z \exp \left( -\dfrac{k \pi i}{n} \right)\right)=\prod _{q=1}^{\infty}\left(1-\left(\dfrac{z}{{\pi}q}\right)^2\exp \left(- \dfrac{2k \pi i}{n} \right)\right)$

to obtain:

$\ln(f \left( z \right)) =\sum _{k=0}^{n-1}\sum _{q=1}^{\infty}\ln\left(1-\left(\dfrac{z}{{\pi}q}\right)^2\exp \left(- \dfrac{2k \pi i}{n} \right)\right)$.

then the series expansion of the logarithm:

$\ln\left(1-\left(\dfrac{z}{{\pi}q}\right)^2\exp \left(- \dfrac{2k \pi i}{n} \right)\right)=-\sum _{r=1}^{\infty}\left(\dfrac{z}{{\pi}q}\right)^{2r}r^{-1} \exp \left(- \dfrac{2kr \pi i}{n} \right)$

to get:

$\ln(f \left( z \right)) =-\sum _{k=0}^{n-1}\sum _{q=1}^{\infty}\sum _{r=1}^{\infty}\left(\dfrac{z}{{\pi}q}\right)^{2r}r^{-1} \exp \left(- \dfrac{2kr \pi i}{n} \right)$.

$\ln(f \left( z \right)) =-\sum _{q=1}^{\infty}\sum _{r=1}^{\infty}\left(\dfrac{z}{{\pi}q}\right)^{2r}r^{-1} \sum _{k=0}^{n-1}\exp \left(- \dfrac{2kr \pi i}{n} \right)$.

Note the Kronecker delta popping up that will only pick out $r$ when it's a multiple (denoted $l$) of $n$:

$\sum _{k=0}^{n-1}\exp \left(- \dfrac{2kr \pi i}{n} \right)=n\delta_{r,nl}$,

so we may multiply by $n$, replace $r$ with $nl$ and sum over $l$:

$\ln(f \left( z \right)) =-\sum _{q=1}^{\infty}\sum _{l=1}^{\infty}\left(\dfrac{z}{{\pi}q}\right)^{2nl}l^{-1} $.

Now recognise the sum over $q$:

$\sum _{q=1}^{\infty}\dfrac{1}{q^{2nl}}=\zeta(2nl)$

and so it follows:

$\ln(f \left( z \right)) =-\sum _{l=1}^{\infty}\zeta(2nl)\left(\dfrac{z}{{\pi}}\right)^{2nl}l^{-1} $.

Now take the exponential:

$f \left( z \right) =\exp\left(-\sum _{l=1}^{\infty}\zeta(2nl)z^{2nl}{\pi}^{-2nl}l^{-1} \right)$,

$f \left( z \right) =\prod _{l=1}^{\infty}\exp\left(-\zeta(2nl)z^{2nl}{\pi}^{-2nl}l^{-1} \right)$,

$f \left( z \right) =\prod _{l=1}^{\infty}\sum _{u=0}^{\infty}\left(-\zeta(2nl)z^{2nl}{\pi}^{-2nl}l^{-1} \right)^u(u!)^{-1}$.

We are interested in the coefficient of $z^{2n}$ and this will not receive any contribution from $1<l$ or $1<u$ and thus:

$f \left( z \right) =1-\zeta(2n)z^{2n}{\pi}^{-2n}+O(z^{4n})$,

and consequently:

$g(z)=2(-1)^n(2n)!2^{-2n}f(z)= 2(-1)^n(2n)!2^{-2n}-2(-1)^n(2n)!2^{-2n}\zeta(2n)z^{2n}{\pi}^{-2n}+O(z^{4n})$.

From which it follows that the coefficient of $z^{2n}$ is:

$-2(-1)^n(2n)!\zeta(2n)(2\pi)^{-2n}=B(2n)$.

As you have supplied an alternative expression for the same coefficient your expression must also equal $B(2n)$.

It seems like an interesting expression, do you have an application for it? Can you use it to calculate Fourier coefficients in products of series for example or something like that?

Related Question