$L^p$ estimates for scalar conservation laws

analysishyperbolic-equationspartial differential equations

Consider the initial value problem for scalar conservation laws

$$\begin{eqnarray} u_t+f(u)_x=0\\
u(x,0)=u_0(x) \end{eqnarray}$$

  1. If $u_0 \in L^{\infty}(\mathbb{R})$ we have $\Vert u(.,t)\Vert_{\infty} \leq \Vert u_0\Vert_{\infty}$

  2. If $u_0 \in L^{1}(\mathbb{R})$ we have $\Vert u(.,t)\Vert_{1} \leq \Vert u_0\Vert_{1}$ (which follows from the contraction principle)

Do we have such results for other values of $p \in (0,\infty)$ ? If so how to prove it?

Any comments or references would be greatly appreciated.

Best Answer

Let $u\in C([0,T];L^{1}(\mathbb{R}))$ be an entropy solution. Then for each convex entropy function $\eta,$ the entropy condition implies the following. $$\int\limits_{\mathbb{R}}\eta(u(x,t))dx \leq \int\limits_{\mathbb{R}}\eta(u(x,0))dx.$$ Choosing $\eta(u)=u^p$ we get the desired $L^p$ bounds on the entropy solution.

P.S.: However, for weak solutions in general such $L^p$ bounds do not exist for any $p \in (0,\infty].$

Related Question