Line Integral of a Vector Field Over a Smooth Curve

calculusline-integralsVector Fields

I am being asked to prove the following:

Suppose that F:$\mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a vector field and $C$ is a smooth curve in $\mathbb{R}^2$. If $||\textbf{F}(x,y)|| \leq M$ for every point $(x,y) \in \mathbb{R}^2$ and $L$ is the arclength of $C$, prove that:

$\mid \int_C \textbf{F} \cdot d \textbf{r} \mid $ $\leq$ $ML$

I am having a bit of trouble figuring out where to start, any redirection would be greatly appreciated.

Best Answer

Suppose ${\bf F}=(f(x,y),g(x,y)$ and then $$ \sqrt{f^2(x,y)+g^2(x,y)}\le M. $$ Let ${\bf r}=(x(t),y(t))$ be the parametric expression of $C$ for $t\in[0,l]$. Then $$ d{\bf r}=(x'(t),y'(t))dt $$ and hence $$ \int_C{\bf{F}}\cdot d{\bf r}=\int_0^l(f(x,y)x'+g(x,y)y')dt. $$ Using $$ |a_1b_1+a_2b_2|\le \sqrt{a_1^2+a_2^2}\sqrt{b_1^2+b_2^2} $$ one has \begin{eqnarray} &&\bigg|\int_C{\bf{F}}\cdot d{\bf r}\bigg|\\ &=&\bigg|\int_0^l(f(x,y)x'+g(x,y)y')dt\bigg|\\ &\le&\int_0^l\bigg|f(x,y)x'+g(x,y)y')\bigg|dt\\ &\le&\int_0^l\sqrt{f^2(x,y)+g^2(x,y)}\sqrt{(x')^2+(y')^2}dt\\ &\le&M\int_0^l\sqrt{(x')^2+(y')^2}dt\\ &=&ML. \end{eqnarray} Another way to do is to simply use $$ \bigg|\int_C{\bf{F}}\cdot d{\bf r}\bigg|\le \int_C\bigg|{\bf{F}}\cdot d{\bf r}\bigg|\le \int_C|{\bf{F}}||d{\bf r}|\le M\int_C|d{\bf r}|=ML. $$

Related Question