Limiting value of the variance of the $\chi_{n}$ distribution (square root of $\chi^2_{n}$ distribution)

probability distributionsprobability theoryreal-analysis

Suppose $X_n \sim \chi^2_n$ for each $n\geq 1.$ I have difficulty in showing that $$\lim_{n\to\infty} \text{Var}(\sqrt{X_n})=1/2.$$
I observed that $\text{E}(X_n)=n$ and $$\text{E}(\sqrt{X_n})=\sqrt{2}\Gamma\left(\frac{n+1}{2}\right)/\Gamma\left(\frac{n}{2}\right).$$ Let us denote $\text{E}(\sqrt{X_n})=\sqrt{n} \alpha_n.$ Then, $$\text{Var}(\sqrt{X_n})= n (1-\alpha_n^2).$$ We can use Stirling's formula to derive that $$\lim_{n\to\infty} \alpha_n =1.$$ But I unable to prove that $$\lim_{n\to\infty} n(1- \alpha_n^2) =1/2.$$
I used CLT and delta method to arrive at the fact that $\sqrt{X_n}-\sqrt{n}$ converges in distribution to $\text{N}(0,1/2)$ as $n\to\infty.$ But this does not imply the required limit.

Best Answer

To expand on my comment's formula for the $\chi_n$ variance, use the Ansatz $$\frac{\Gamma((n+1)/2)}{\Gamma(n/2)}=\sqrt{\frac{n}{2}}+\frac{c}{\sqrt{n}}+o(n^{-1/2}).$$Then $$\frac{\Gamma((n+2)/2)}{\Gamma((n+1)/2)}=\sqrt{\frac{n}{2}}+\frac{c+1/\sqrt{8}}{\sqrt{n}}+o(n^{-1/2}).$$Multiplying, $$\frac{n}{2}=\frac{n}{2}+\frac{2c+1/\sqrt{8}}{\sqrt{2}}+o(1).$$Hence $c=-1/\sqrt{32}$. The desired limit is then $-2c\sqrt{2}=\frac12$, as required.