Limiting distribution of $\frac{X_1+···+X_n}{\sqrt{X_1^2+···+X_n^2}}$ for $(X_i)$ i.i.d. logistic with mean $0$ and variance $2$

probability distributionsprobability theoryprobability-limit-theorems

$X_1$, $X_2$, . . . are iid logistic random variables with mean $0$
and variance $2$, and
$$T_n=\frac{X_1+···+X_n}{\sqrt{X_1^2+···+X_n^2}}$$Consider the
sequence $T_1$, $T_2$, . . . and give the pmf or pdf of the limiting
distribution.

I have that for a logistic random variable $X$

$$\mathsf{Var}(X)=\frac{\pi^2\beta^2}{3}$$

and so $\beta=\sqrt{\frac{6}{\pi^2}}$ giving that $X\sim Logistic\left(\mu=0,\beta=\sqrt{\frac{6}{\pi^2}}\right)$ with pdf

$$f_X(x)=\frac{1}{\sqrt{\frac{6}{\pi^2}}}\frac{e^\frac{-x}{\sqrt{\frac{6}{\pi^2}}}}{\left(1+e^\frac{-x}{\sqrt{\frac{6}{\pi^2}}}\right)^2}, -\infty\lt x\lt\infty$$

I think it may be useful to note that by symmetry of $X$ around $0$, we have $$\lim_{n\rightarrow\infty}\sum_{i=1}^n X_i=0$$

My intuition tells me this will converge to a degenerate random variable for which $$P(T=0)=1$$

but I'm not sure how to go about formalizing this.

Best Answer

After reviewing @Did's helpful comment:

We have that by CLT $$\sqrt{n}\left(\frac{\sum{X_n}}{n}-0\right)\stackrel{d}{\rightarrow}\mathsf{N}(0,2)$$

Hence

$$\frac{1}{\sqrt{n}}(X_1+...+X_n) \stackrel{d}{\rightarrow}\mathsf{N}(0,2)$$

We also have that

$$\mathsf E(X^2)=\mathsf{Var}(X)+\mathsf E(X)^2=2$$

Thus by the law of large numbers

$$V_n\stackrel{p}{\rightarrow}2$$

and hence

$$\sqrt{V_n}\stackrel{p}{\rightarrow}\sqrt{2}$$

By Skutsky's Theorem we get that

$$\frac{U_n}{\sqrt{V_n}}\stackrel{p}{\rightarrow}\frac{1}{\sqrt{2}}\mathsf N(0,2)=\mathsf N(0,1)$$

Thus the pdf of the limiting distribution is

$$f_T(t)=\frac{1}{\sqrt{2\pi}}\mathsf{exp}\left(-\frac{t^2}{2}\right), -\infty\lt t\lt\infty$$

Related Question