Limit probability for a random graph to have an isolated edge

combinatoricsgraph theoryprobability theoryrandom-graphs

Let $G(n,p)$ be the random graph, a.k.a Erdos-Renyi graph. Show that

$$\mathbb{P}[G(n,p) \text{ contains an isolated edge }] \xrightarrow{n \rightarrow \infty} \begin{cases} 0 \text{ if $p = (1+\varepsilon)\frac{\ln n}{2n}$} \\ 1 \text{ if $p = (1-\varepsilon)\frac{\ln n}{2n}$} \end{cases}$$

What I got until now is the following: If we let $X_{ij}$ be the indicator variable that the edge ${i,j}$ is isolated, then we have for $A := \# \text{isolated edges}$

$$\mathbb{E}[A]=\sum_{i<j}\mathbb{E}[X_{ij}]={n \choose 2}p(1-p)^{2(n-2)}.$$

However, I do not see how to proceed from here. Could you please give me a hint?

Best Answer

Write $A=\sum_{i <j} X_{ij}$. Let $$p=(1+J\epsilon) \cdot \ln (n)/(2n) \quad \text{where} \quad J=\pm 1 \,.$$ Then using the Taylor expansion $\ln(1+x)=x+O(x^2)$ for $ |x|<1/2$, we infer that for $n \to \infty$ we have $$\ln E(A)=2\ln(n)+\ln(p)-2np+o(1)$$ $$= 2\ln(n)-\ln(n)+O(\ln \ln n) -(1+J\epsilon) \cdot \ln (n) =(-J\epsilon+o(1)) \cdot \ln (n) \,.$$ Thus for $J=1$, $$\mathbb{P}[G(n,p) \text{ contains an isolated edge }] \le E[A] =n^{-\epsilon+o(1)} \to 0 \quad \text{as} \quad n \to \infty \,.$$

On the other hand, if $J=-1$ then $E[A] =n^{\epsilon+o(1)}$. A direct computation shows that the covariance satisfies $$\text{Cov}(X_{ij},X_{k\ell}) \le ((1-p)^{-4}-1)E(X_{ij})E(X_{k\ell}) \le 5p n^{2\epsilon-4+o(1)} \le n^{3\epsilon-5}$$ for large $n$, so Var$(A)=o(E(A)^2).$ Chebyshev's inequality then yields that $$\mathbb{P}[G(n,p) \text{ contains no isolated edges }] \le P(A=0) \to 0 \quad \text{as} \quad n \to \infty \,.$$

Related Question