Limit $\lim _{t\to \infty} \int_t^\infty t \frac {\sin^2 (u)}{u^2} du$

improper-integralslimits

Does the limit $\displaystyle{\lim _{t \to \infty} t \cdot \int_t^\infty \frac {\sin^2 (u)}{u^2} \mathrm{d}u}$ exist?

Intuitively, since $\sin(t) > \frac 1 2$ holds for at least half of a period, I would assume that the integral $\int_t^\infty \frac {\sin^2 (u)}{u^2} \mathrm{d}u$ behaves approximately as $\int_t^\infty \frac {1}{u^2} \mathrm{d}u$. But the latter is $\frac 1 t$, so it seems that the limit diverges. Is it true?

Best Answer

$$I(t)= t \cdot \int_t^\infty \frac {\sin^2 (u)}{u^2} \mathrm{d}u$$

Let $x=u/t$

$$I(t)=\int_1^\infty \frac{\sin^2 tx}{x^2}dx$$

Integrate by parts and define $y=2tx$, to get

$$I(t)=\sin^2 t+t\int_{2t}^\infty \frac{\sin y}{y}dy$$

Integration by part again,

$$I(t)=\sin^2 t+\frac{1}2\cos2t-t\int_{2t}^\infty \frac{\cos y}{y^2}dy=\frac{1}2-t\int_{2t}^\infty \frac{\cos y}{y^2}dy$$

Next, we show the limit of the last term is $0$

$$\lim_{t\rightarrow \infty} t\int_{2t}^\infty \frac{\cos y}{y^2}dy=\lim_{t\rightarrow \infty} t\cdot\frac{\sin 2t}{4t^2}+2t\int_{2t}^\infty \frac{\sin y}{y^3}dy=\lim_{t\rightarrow \infty} 2t\int_{2t}^\infty \frac{\sin y}{y^3}dy$$ and

$$\lim_{t\rightarrow \infty} \left|2t\int_{2t}^\infty \frac{\sin y}{y^3}dy\right|\le \lim_{t\rightarrow \infty} \left|2t\int_{2t}^\infty \frac{1}{y^3}dy\right|=0$$

Therefore,

$$\lim_{t\rightarrow \infty}I(t)=\frac{1}2$$

Related Question