Let X be a topological space such that A $ \in $ X and A’ $ \subset $ P(X) and A’ $\neq$ $\emptyset$. Prove or disprove the statements below.

elementary-set-theorygeneral-topology

Let X be a topological space such that A $ \subset $ X and A' $ \subset $ P(X). Prove or disprove the statements below.

int($\bigcup_{A \in A' }$ A) $\supset$ $\bigcup_{A \in A'}$int(A)

int($\bigcap_{A \in A'}$A) = $\bigcap_{A \in A'}$int(A)

$\overline {\bigcup_{A \in A' }A}$ = $\bigcup_{A \in A'} \bar A$

$\overline {\bigcap_{A \in A' }A}$ $\subset$ $\bigcap_{A \in A'} \bar A$

====================================================================

As we know that the following statements are true, then all of the above statements are also true? Right?

int(A $\cup$ B) $\supset$ int(A) $\cup$ int(B)

int(A $\cap$ B) = int(A) $\cap$ int(B)

$\overline{A \cup B}$ = $\bar A$ $\cup$ $\bar B$

$\overline{A \cap B}$ $\subset$ $\bar A$ $\cap$ $\bar B$

Best Answer

The 3rd one is wrong because it implies that the union of a collection of closed sets is closed. Suppose every $A\in A'$ is closed. Let $B=\cup_{A\in A'}A.$ Since $\bar A=A$ for every $A\in A',$ we have $\cup_{A\in A'}\bar A=\cup_{A\in A'}A=B$ on the RHS, but the LHS is $\bar B.$

Example. Let $X=\Bbb R$ with the usual topology. Let $B$ be $any$ subset of $\Bbb R.$ Let $A'=\{\,\{r\}: r\in B\}.$

Inferences about finite collections rarely apply to infinite collections.

Related Question