Let $X$ be a normed space and $M$ a finite dimension subspace, $M\neq X$. Prove that $\exists x\in X$ such that $||x||=d(x,M)=1$. And prove…

functional-analysisnormed-spaces

So, i'm facing this problem

Let $X$ be a normed space and $M$ a finite dimension subspace of $X$, $M\neq X$.

$a)$ Prove that $\exists x\in X$ such that $\left\lVert x\right\rVert=d(x,M)=1$.

$b)$ Prove that if $dim(X)=\infty$ then $\exists \{x_n\}$ in the unit sphere of $X$ such that $\left\lVert x_n-x_m\right\rVert\geq 1$, $\forall n,m\in \mathbb{N}$, $n\neq m$

What i've tried so far: Let $x \in X$ with $\left\lVert x \right\rVert =1$, since $M$ has finite dimension, then $\exists y \in M \ : \ d(x,M)=d(x,y)= \left\lVert y-x \right\rVert$. And is easy to see that $d(y,y-\frac{y-x}{\left\lVert y-x \right\rVert})=1$ and $$\left\lVert y-\frac{y-x}{\left\lVert y-x \right\rVert} \right\rVert =\frac{1}{\left\lVert y-x \right\rVert}\left\lVert y\left\lVert y-x \right\rVert -y+x\right\rVert \geq \frac{d(x,M)}{\left\lVert y-x \right\rVert}=\frac{\left\lVert y-x \right\rVert}{\left\lVert y-x \right\rVert}=1$$
where i used that $y\left\lVert y-x \right\rVert -y\in M$. So i found an element of $X$, $z:=y-\frac{y-x}{\left\lVert y-x \right\rVert}$, $d(z,M)=1$ and $\left\lVert z \right\rVert\geq 1$. But i think i can't prove that $\left\lVert z \right\rVert=1$ this way

Any help would be much appreciated.

Best Answer

For $(a)$ take $z=\frac{1}{d}\cdot (x-y)$ where $d=d(x,M)$. Then, $||z||=1$. And, for $y'\in M$ we have \begin{align} ||z-y'||&=\bigl|\bigl|\frac{1}{d}(x-y)-y'\bigl|\bigl|\\ &=\frac{1}{d}\bigl|\bigl|x-y-dy'\bigr|\bigr|\\ &\geq \frac{d}{d}=1 \end{align}

Hence, $d(z,M)\geq 1$. For the other inequality, $$d(z,M)\leq ||z-0||=||z||=1$$

Therefore, $d(z,M)=1=||z||$. Now, for $(b)$, pick $x_1$ on the unit sphere. And let $M_1=span(x_1)$. Since, $X$ is infinite dimensional, $M_1\neq X$. Hence, there is some $x\notin M_1$. Since, $M_1$ is a finite dimensional subspace by $(a)$ there is some $x_2$ on the unit sphere such that $d(x_2,M)=1=||x_2||$. Now, let $M_2=span(x_1,x_2)$ and repeat the same argument as before. Continuing this way, recursively, we construct a sequence $x_n$ such that $||x_n-x_m||\geq 1$ for every $n \neq m$.

Related Question