Contest Math – Find Value of Differentiable Function with Logarithmic Condition

contest-mathderivativesfunctionslimits

Let $f$ be a differentiable function satisfying $\log_2(f(3x))=x+\log_2(3f(x))\;\forall x\in\mathbb R$ and $f'(0)=1$. Find the value of $[f(3)]$, where $[k]$ denotes greatest integer less than or equal to $k$.

Solution:

$\log_2(f(3x))=x+\log_2(3f(x))$

$\frac{f(3x)}{3f(x)}=2^x$

$\frac{f(x)}{3f(\frac x3)}\cdot\frac{f(\frac x3)}{3f(\frac x{3^2})}\cdot\frac{f(\frac x{3^2})}{3f(\frac x{3^3})}\cdot\cdot\cdot\frac{f(\frac x{3^{n-1}})}{3f(\frac x{3^n})}=2^{\frac x3}\cdot2^{\frac x{3^2}}\cdot\cdot\cdot2^{\frac x{3^n}}$

$\frac{f(x)}{3^n\cdot f(\frac x{3^n})}=2^{\left(\frac x3+\frac x{3^2}+…+\frac x{3^n}\right)}$

$\lim_{n\to\infty}\frac{f(x)\cdot\frac x{3^n}}{x\cdot f(\frac x{3^n})}=\lim_{n\to\infty}2^{\left(\frac x3+\frac x{3^2}+…+\frac x{3^n}\right)}$

$\frac{f(x)}{x\cdot f'(0)}=2^{\left(\frac {\frac x3}{1-\frac13}\right)}$

$f(x)=x\cdot2^{\frac x2}$

$\therefore f(3)=3\cdot2^{\frac32}=6√2≈8.4$

$\implies[f(3)]=8$

My doubt:

They seem to have written $\lim_{n\to\infty}\frac{f(\frac x{3^n})}{\frac x{3^n}}=f'(0)$

I don't understand this step.

My Attempt:

$f'(0)=\lim_{h\to0}\frac{f(0+h)-f(0)}{h}$

Replacing $h$ by $\frac x{3^n}$

$f'(0)=\lim_{n\to\infty}\frac{f(\frac x{3^n})-f(0)}{\frac x{3^n}}$

I don't think $f(0)$ is zero because that's not in the range.

Best Answer

Here is a proof of absence of Such a function for $x\in \mathbb{R}$

Assume A differentiable function $f(x)$ such that $\log_2(f(3x))=x+\log_2(3f(x))$ $\forall x\in \mathbb{R}$,

Given $f'(0)=1$

Noticing the domain of This functional equation, $f(x)\neq 0$ $\forall x\in \mathbb{R}$

taking Antilogarithm with base $2$ on both sides of functional equation

It follows

$f(3x)=2^x\cdot3f(x) \tag 1$

As the function $f(x)$ is differentiable ,

differentiate equation $1$ on both sides

$3f'(3x)=2^x\ln2(3f(x)) +2^x\cdot3f'(x) \tag 2$

Substituting $x=0$ in equation $2$

$3f'(0)=\ln2\cdot(3f(0)) +3f'(0) \tag 3$

substituting $f'(0)=1$ in equation $3$

it follows

$1=\ln2\cdot f(0)+1$

yielding

$f(0)=0$

But this contradicts the statement $f(x)\neq0$ which was a direct consequence of domain of functional equation, Hence by contradiction, Such function does not exist $\forall x\in \mathbb{R}$

Related Question