Let $\alpha: I \subset \mathbb R \to \mathbb R^3$ be a regular curve in space (not necessarily Parameterized by arc length)..

curvesdifferential-geometrysolution-verification

Let $\alpha: I \subset \mathbb R \to \mathbb R^3$ be a regular curve in space (not necessarily Parameterized by arc length). Show that:
$$k(r) = \frac{\vert \alpha’(r) \times \alpha’’(r) \vert}{\vert \alpha’(r)\vert^3}$$
$$\tau(r) = \frac{\langle\alpha'(r) \times \alpha'''(r), \alpha''(r) \rangle}{\vert \alpha'(r ) \times \alpha''(r)\vert^2}$$

Differentiating with respect to $t$ the expression $\beta(s(t))=\alpha(t)$.
$$\frac{d\beta}{ds}\frac{ds}{dt} = \alpha'(t)\tag1$$
$$\frac{d^2\beta}{ds^2}\left(\frac{ds}{dt}\right)^2 + \frac{d\beta}{ds}\frac{d^2s}{dt^2 } = \alpha''(t)\tag2$$
$$\frac{ds}{dt} = \vert \alpha'(t)\vert\tag3$$

$$\frac{d^2s}{dt^2} = \frac{\langle\alpha''(t),\alpha'(t)\rangle}{\vert \alpha'(t)\vert}\tag4$$

of (1) and (2) that

$$\alpha'(t) \times \alpha''(t) = \left(\frac{ds}{dt}\right)^3\frac{d\beta}{ds}\times\frac{d^2\beta }{ds^2}$$

Therefore,

$$\vert \alpha'(t) \times \alpha''(t) \vert = \left\vert \frac{ds}{dt}\right\vert^3 \left\vert \frac{d^2\beta}{ds^ 2}\right\vert$$

Where we use the fact that $\beta$ is parameterized by the arc length and therefore $\frac{d\beta}{ds}$ is orthogonal to $\frac{d^2\beta}{ds^2} $.We conclude, using (3) that

$$k(s(t)) = \left\vert\frac{d^2\beta}{ds^2}\right\vert = \frac{\vert \alpha'(t) \times \alpha''(t)\vert}{\vert\alpha'(t)\vert^3}$$

I'm missing some details that I can't fill in.

Thanks for any help.

Best Answer

Follows my derivation of the curvature formula

$\kappa(t) = \dfrac{\vert \alpha''(t) \times \alpha'(t) \vert}{\vert \alpha'(t) \vert^3}, \tag 0$

which I believe to be reasonably canonical. I have not yet been able to derive the expression for torsion, though I have put considerable effort into my attempts. I will keep working on it and edit my solution, if I find one, into this answer.

The unit tangent vector $T(t)$ to the curve $\alpha(t)$ is clearly given by

$T(t) =\dfrac{\alpha'(t)}{\vert \alpha'(t) \vert} = \vert \alpha'(t) \vert^{-1}\alpha'(t), \tag 1$

where the magnitude of $\alpha'(t)$ is

$\vert \alpha'(t) \vert = \langle \alpha'(t), \alpha'(t) \rangle^{1/2}; \tag{2}$

we may find the rate of change of the magnitude of $\alpha'(t)$ along $\alpha(t)$:

$\vert \alpha'(t) \vert' = \dfrac{1}{2}\langle \alpha'(t), \alpha'(t) \rangle^{-1/2}(2\langle \alpha'(t), \alpha''(t) \rangle) = \langle \alpha'(t), \alpha'(t) \rangle^{-1/2}\langle \alpha'(t), \alpha''(t) \rangle$ $= \langle \langle \alpha'(t), \alpha'(t) \rangle^{-1/2}\alpha'(t), \alpha''(t) \rangle = \langle \vert \alpha'(t) \vert^{-1} \alpha'(t), \alpha''(t) \rangle = \langle T(t), \alpha''(t) \rangle. \tag{3}$

The speed or rate of change of arc-length $s$ along $\alpha(t)$ with respect to $t$ is

$\dfrac{ds}{dt} = \vert \alpha'(t) \vert, \tag 4$

from which

$\dfrac{dt}{ds} = \vert \alpha'(t) \vert^{-1} = \langle \alpha'(t), \alpha'(t) \rangle^{-1/2}. \tag 5$

We may also find the rate of change of the tangent vector $T(t)$ along $\alpha(t)$:

$\dfrac{dT(t)}{dt} = T'(t) = -\vert \alpha'(t) \vert^{-2} \vert \alpha'(t) \vert' \alpha'(t) + \vert \alpha'(t) \vert^{-1}\alpha''(t), \tag 6$

and in light of (3) this may be written

$\dfrac{dT(t)}{dt} = T'(t) = -\vert \alpha'(t) \vert^{-2} \langle T(t), \alpha''(t) \rangle \alpha'(t) + \vert \alpha'(t) \vert^{-1}\alpha''(t)$ $= -\vert \alpha'(t) \vert^{-1} \langle T(t), \alpha''(t) \rangle T(t) + \vert \alpha'(t) \vert^{-1}\alpha''(t) = \vert \alpha'(t) \vert^{-1}(\alpha''(t) - \langle T(t), \alpha''(t) \rangle T(t)). \tag 7$

We now introduce the first Frenet-Serret equation

$\dfrac{dT}{ds} = \kappa N; \tag{7.1}$

written in terms of the variable $t$ and the curve $\alpha(t)$ this becomes;

$\kappa(t) N(t) = \dfrac{dT(t)}{ds} = \dfrac{dT(t)}{dt}\dfrac{dt}{ds} = \vert \alpha'(t) \vert^{-1} \vert \alpha'(t) \vert^{-1}(\alpha''(t) - \langle T(t), \alpha''(t) \rangle T(t))$ $= \vert \alpha'(t) \vert^{-2}(\alpha''(t) - \langle T(t), \alpha''(t) \rangle T(t)); \tag 8$

since

$N(t) \cdot N(t) = T(t) \cdot T(t) = 1, \tag{8.1}$

we have

$\kappa^2(t) = \kappa(t) N(t) \cdot \kappa(t)N(t)$ $= \vert \alpha'(t) \vert^{-2}(\alpha''(t) - \langle T(t), \alpha''(t) \rangle T(t)) \cdot \vert \alpha'(t) \vert^{-2}(\alpha''(t) - \langle T(t), \alpha''(t) \rangle T(t))$ $= \vert \alpha'(t) \vert^{-4} (\alpha''(t) - \langle T(t), \alpha''(t) \rangle T(t)) \cdot (\alpha''(t) - \langle T(t), \alpha''(t) \rangle T(t))$ $= \vert \alpha'(t) \vert^{-4} (\langle \alpha''(t), \alpha''(t) \rangle - 2 \langle \alpha''(t), T(t) \rangle^2 + \langle \alpha''(t), T(t) \rangle^2)$ $= \vert \alpha'(t) \vert^{-4}(\langle \alpha''(t), \alpha''(t) \rangle - \langle \alpha''(t), T(t) \rangle^2). \tag 9$

We apply the vector identity

$\vert \mathbf A \times \mathbf B \vert^2 = \vert \mathbf A \vert^2 \vert \mathbf B \vert^2 - (\mathbf A \cdot \mathbf B)^2, \tag{10}$

where

$\mathbf A, \mathbf B \in \Bbb R^3, \tag{11}$

(cf. this wikepedia page) to the expression $\langle \alpha''(t), \alpha''(t) \rangle - \langle \alpha''(t), T(t) \rangle^2$,

taking

$\mathbf A = \alpha''(t), \tag{12}$

$\mathbf B = T(t); \tag{13}$

we immediately see that

$\langle \alpha''(t), \alpha''(t) \rangle - \langle \alpha''(t), T(t) \rangle^2 = \vert \alpha''(t) \times T(t) \vert^2; \tag{14}$

thus (9) becomes

$\kappa^2(t) = \vert \alpha'(t) \vert^{-4} \vert \alpha''(t) \times T(t) \vert^2, \tag{15}$

whence

$\kappa(t) = \vert \alpha'(t) \vert^{-2} \vert \alpha''(t) \times T(t) \vert. \tag{16}$

We now recall (1) and substitute $\vert \alpha'(t) \vert^{-1} \alpha'(t)$ for $T(t)$ on the right-hand side of this equation, and obtain

$\kappa(t) = \vert \alpha'(t) \vert^{-2} \vert \alpha''(t) \times \vert \alpha'(t) \vert^{-1}\alpha'(t) \vert = \vert \alpha'(t) \vert^{-3} \vert \alpha''(t) \times \alpha'(t) \vert$ $= \dfrac{\vert \alpha''(t) \times \alpha'(t) \vert}{\vert \alpha'(t) \vert^3}, \tag{17}$

the desired result.