Let $a_1/b_1,\ldots,a_n/b_n$ be rational numbers in lowest terms. If $M={\rm lcm}(b_1,\ldots,b_n)$, prove $\gcd(Ma_1/b_1,\ldots,Ma_n/b_n)=1$.

elementary-number-theorygcd-and-lcmnumber theory

Problem. Let $a_1/b_1,\ldots,a_n/b_n$ be rational numbers in lowest terms. If $M={\rm lcm}(b_1,\ldots,b_n)$, prove that the gcd of $Ma_1/b_1,\ldots,Ma_n/b_n$ is $1$.

I think this statement is false. For example, consider $$\frac{2}{3}\quad{\rm and}\quad \frac{2}{9}.$$ Both of them are in the lowest form, but $M={\rm lcm}(3,9)=9$ where $$9\cdot\frac{2}{3}=6\quad{\rm and}\quad 9\cdot\frac{2}{9}=2$$ are not relatively prime.

Nonetheless, if I add the assumption that $\gcd(a_1,\ldots,a_n)=1$, will the assertion be true? I tried writing $1$ as a linear combination of those numbers, but it seems not working.

Best Answer

It is true when $\,d := \gcd\{a_i\} = 1.\,$ More generally it is the special case $\,d = 1,\,m = \ell\,$ of the Theorem below, which is the integral-scaled version of the gcd formula for reduced fractions $\frac{a_i}{b_i}$ (putting $\,m=1\,$ below gives the $k$-ary extension of this formula), which says the the gcd of reduced fractions is the gcd of their numerators over the lcm of their denominators (and dually for lcm).

Theorem $\, $ If $\,m,a_i,b_i\in\Bbb Z,\,$ $\,b_i\mid m a_i,\,$ $\,\color{#c00}{\gcd(b_i,a_i/d)\!=\!1},\,$ $\,d\! =\! \gcd\{a_i\},\,$ $\,\ell\! =\! {\rm lcm}\{b_i\}\,$ then

$\qquad\qquad\quad \gcd\left(\!\dfrac{ma_1}{b_1},\ldots,\dfrac{ma_k}{b_k}\!\right)\, =\, \dfrac{m\gcd(a_1,\ldots,a_k)}{{\rm lcm}(b_1,\:\!\ldots,\:\!b_k)\!\!\!\!\!\!}\,=\,\dfrac{md}{\ell}$

$\begin{align}{\bf Proof}\ \ \ c\,&\mid \gcd\{ma_i/b_i\}\\[.1em] \iff \, \ c\,&\mid {ma_i}/{b_i},\,\forall i, \ \rm by\ gcd\ \color{#90f}{universal}\ property\\[.3em] \iff\! cb_i&\mid ma_i,\, \forall i\\[.3em] \iff\ \color{#c00}{b_i}&\mid ma_i/c={md}/c\,(\color{#c00}{a_i/d}),\, \forall i,\!\!\!\!\!\!\!\!\!\!\!\!\!\!{\smash{\overbrace{\&\ \ md/c\in\Bbb Z}^{\textstyle c\mid ma_i\Rightarrow c\mid\gcd\{ma_i\}= md\!\!\!\!\!\!\!\!\!\!\!}}}\\[.1em] \iff\ b_i&\mid {md}/{c},\,\forall i,\ \ {\rm by\ } \color{#c00}{\gcd(b_i,a_i/d)\!=\!1}\ \text{& Euclid's Lemma}\\[.1em] \iff\ \ell\ &\mid {md}/c,\ \ \ \ \ \ \ \ \rm by\ lcm\ \color{#90f}{universal}\ property\\[.1em] \iff\:\! \ell c&\mid md\\[.1em] \iff\ c\ &\mid {md}/\ell \end{align}$

We used the gcd distributive law in $\,\gcd\{ma_i\} = m\gcd\{a_i\} = md,\,$ and Euclid's Lemma and the gcd & lcm $\rm \color{#90f}{universal}\ properties$.

Remark $ $ Since the proof used only laws valid in every gcd domain, the theorem remains true if we replace $\Bbb Z$ by any gcd domain, e.g. any UFD.