$\left \langle A|B \right \rangle=\text{tr}(A+B)$ defines an inner product

inner-productslinear algebrasolution-verification

Prove if the following statement is true or false.

Let $V=M_{n}(\mathbb{R})$. Then $\left \langle A|B \right \rangle=\text{tr}(A+B)$ defines an inner product.

Attempt:

Consider a nilpotent matrix $A$. $\left \langle A,A \right \rangle=2\text{tr}(A)=0$, but $A$ is not necessarily $0$. Therefore, $\left \langle A|B \right \rangle=\text{tr}(A+B)$ does not define an inner product because it does not comply with the positive definiteness.

Best Answer

You can also consider the matrix $-I_{n}$. Then,

$$\left \langle -I_{n}|-I_{n} \right \rangle=\text{tr}(-2I_{n})=-2n<0,\forall n \in \mathbb{N}.$$

Related Question