Laurent series expansion of $\frac{1}{z(z-2)^2}$ at $z=2$

complex-analysislaurent series

Im struggling a bit with Laurent series expansions, and I am stuck on the following exercise:

Find a Laurent series expansion with center $z=2$ of $f(z)=\frac{1}{z(z-2)^2}$

My solution so far is not a lot:

I've found that there will be one Laurent series at the punctured disk $D(2,2)$ and one $A=(2,2,\infty)$

Starting with the punctured disk $D(2,2)$ I know I want the polynomial to have the form $\frac{1}{1-c*z}$ since we are expanding in our "inner" area.

The part im stuck on is how I should get $\frac{1}{z(z-2)^2}$ = $\frac{1}{z}\frac{1} {(z-2)^2}$ to $\frac{1}{1-c*z}$ to able to write as a series.

Can anyone help me out please?

Thanks!

Best Answer

Using partial fraction expansion, we can write

$$\begin{align} \frac1{z(z-2)^2}=\frac1{4z}-\frac1{4(z-2)}+\frac1{2(z-2)^2} \end{align}$$



To obtain the Laurent series for $|z-2|<2$, we write

$$\begin{align} \frac1{z(z-2)^2}&=\frac1{4(z-2+2)}-\frac1{4(z-2)}+\frac1{2(z-2)^2}\\\\ &=\frac18 \frac1{1+\frac{z-2}2}-\frac1{4(z-2)}+\frac1{2(z-2)^2}\\\\ &=\frac1{2(z-2)^2}-\frac1{4(z-2)}+\frac18\sum_{n=0}^\infty (-1)^n\left(\frac{z-2}{2}\right)^n \end{align}$$



And to obtain the Laurent series for $|z-2|>2$ we write

$$\begin{align} \frac1{z(z-2)^2}&=\frac1{4(z-2+2)}-\frac1{4(z-2)}+\frac1{2(z-2)^2}\\\\ &=\frac1{4(z-2)} \frac1{1+\frac2{z-2}}-\frac1{4(z-2)}+\frac1{2(z-2)^2}\\\\ &=\frac1{2(z-2)^2}-\frac1{4(z-2)}+\frac1{8}\sum_{n=1}^\infty (-1)^{n-1}\left(\frac{2}{z-2}\right)^n\\\\ &=\frac1{8}\sum_{n=3}^\infty (-1)^{n-1}\left(\frac{2}{z-2}\right)^n \end{align}$$

Related Question