$\langle Pu,v \rangle = \langle u, Pv\rangle \quad \forall u,v \in H$ then $P$ is the orthogonal projection

analysisfunctional-analysislinear algebrareal-analysis

I am wondering if my proof of the following exercise is valid

[Royden 16.9] Let $V$ be a closed subspace of a Hilbert space $H$ and $T$ a projection of $H$ onto $V$. Show that $T$ is the orthogonal projection of $H$ onto $V$ if and only if $\langle Tu,v \rangle = \langle u, Tv \rangle \quad \forall u,v \in H$.

Let $P$ be the orthogonal projection onto $V$. Then for $u,v \in H$,

$$
\langle (T-P)(u), v\rangle = \langle Tu,v \rangle – \langle Pu,v \rangle = \langle u, Tv \rangle – \langle u,Pv \rangle = \langle 0, Tv-Pv\rangle =0
$$

Which implies $T=P$. By Proposition 5, $P$ satisfies $\langle Pu,v \rangle = \langle u, Pv \rangle \quad \forall u,v \in H$.

Best Answer

You are given a projection $T$ of $H$ onto $V$. Therefore $T^2=T$. And $T$ is an orthogonal projection iff $(x-Tx)\perp V$ for all $x$, which is equivalent to $$ \langle x-Tx,Ty\rangle =0,\;\; x,y\in H. $$ This can be rewritten as $$ \langle x,Ty\rangle=\langle Tx,Ty\rangle,\;\; x,y\in H. $$ This condition is equivalent to $$ \langle x,Ty\rangle = \langle Tx,y\rangle,\;\; x,y\in H. $$