Joint probability of independent binomial random variables

conditional probabilitydensity functionprobabilityprobability distributionsprobability theory

Let X1 and X2 be two independent binomial random variables with $X_i$ having parameters $(n_i, p_i)$ where i = 1, 2. Find
(a) P($X_1X_2$ = 0)
(b) P($X_1+X_2$ = 1)
(c) P($X_1+X_2$ = 2)

Can someone explain how to go about this question? I am completely clueless. As far as I understand, I would need to compute the joint PMF of X1 and X2. X1X2 can only be 0, if either or both of X1 and X2 are zero. So do I just add the product of marginal PMFs for these values? Is this the right approach?

Best Answer

For (a), observe that $$ \{X_1X_2=0\} = \{X_1=0,X_2>0\}\cup\{X_1>0,X_2=0\}\cup\{X_1=0,X_2=0\} $$ where the union is disjoint, so by independence we compute \begin{align} \mathbb P(X_1X_2=0) &= \mathbb P(X_1=0,X_2>0)+\mathbb P(X_1>0,X_2=0) + \mathbb P(X_1=0,X_2=0)\\ &=\mathbb P(X_1=0)(1-\mathbb P(X_2=0))+\mathbb P(X_2=0)(1-\mathbb P(X_1=0)) + \mathbb P(X_1=0)\mathbb P(X_2=0)\\ &=(1-p_1)^{n_1}(1-(1-p_2)^{n_2})+ (1-p_2)^{n_2}(1-(1-p_1)^{n_1}) + (1-p_1)^{n_1}(1-p_2)^{n_2}\\ &= (1-p_1)^{n_1}+(1-p_2)^{n_2}(1-(1-p_1)^{n_1}). \end{align}

For (b) we similarly have $$ \{X_1+X_2=1\} = \{X_1=0,X_2=1\}\cup\{X_1=1,X_2=0\}, $$ and hence \begin{align} \mathbb P(X_1+X_2=1) &= \mathbb P(X_1=0,X_2=1)+\mathbb P(X_1=1,X_2=0)\\ &= \mathbb P(X_1=0)\mathbb P(X_2=1) + \mathbb P(X_1=1)\mathbb P(X_2=0)\\ &= (1-p_1)^{n_1}n_2p_2(1-p_2)^{n_2-1} + (1-p_2)^{n_2}n_1p_1(1-p_1)^{n_1-1}\\ &= (1-p_1)^{n_1}(1-p_2)^{n_2}\left(\frac{n_1p_1}{1-p_1} + \frac{n_2p_2}{1-p_2}\right). \end{align} The computation for (c) is similar: $$ \{X_1+X_2=2\}=\{X_1=0,X_2=2\}\cup\{X_1=1,X_2=1\}\cup\{X_1=2,X_2=0\} $$ and hence \begin{align} \mathbb P(X_1+X_2=2) &= \mathbb P(X_1=0,X_2=2)+\mathbb P(X_1=1,X_2=1)+\mathbb P(X_1=2,X_2=0)\\ &=\mathbb P(X_1=0)\mathbb P(X_2=2)+\mathbb P(X_1=1)\mathbb P(X_2=1)+\mathbb P(X_1=2)\mathbb P(X_2=0)\\ &=\small(1-p_1)^{n_1}\frac{n_2(n_2-1)}2 p_2^2(1-p_2)^{n_2-2} + n_1p_1(1-p_1)^{n_1-1}n_2p_2(1-p_2)^{n_2-1}+(1-p_2)^{n_2}\frac{n_1(n_1-1)}2 p_1^2(1-p_1)^{n_1-2}. \end{align}

Related Question