Isn’t $|x+jy| = \sqrt{x^2+(jy)^2}$ for $j=\sqrt{-1}$

algebra-precalculuscomplex numbers

I'm going through the book "System Dynamics" by Katsuhiko Ogata. Specifically I'm reading about frequency response. According to the book to get the magnitude of the sinusoidal transfer function $G(j\omega)$:

$$
|G(j\omega)| = \lvert{\frac{X(j\omega)}{P(j\omega)}}\rvert =\frac{|X(j\omega|}{|P(j\omega)|}
$$

I know that the magnitude of a complex number is $\sqrt{(RealPart)^2+(ImPart)^2}$

So, there's an example in the book where:
$$
G(j\omega) = \frac{1}{(k-m\omega^2)+jb\omega}
$$

I tried to solve it following the formula $|G(j\omega)|=\frac{|X(j\omega|}{|P(j\omega)|}$:
$$
\frac{|1|}{|(k-m\omega^2)+jb\omega|} = \frac{1}{\sqrt{(k-m\omega^2)^2+(jb\omega)^2}}=\frac{1}{\sqrt{(k-m\omega^2)^2-b^2\omega^2}}
$$

The last result is from $j=\sqrt{-1}$ , so $j^2 = -1$. The problem is that in the book the magnitude is:
$$
\frac{1}{\sqrt{(k-m\omega^2)^2+b^2\omega^2}}
$$

I can't figure out why $+$ instead of $-$ in denominator. Any help will be appreciated. Thank you

Best Answer

By definition, the imaginary part of the complex number $a+ib$ (where $a$ and $b$ are real numbers) is $b$, not $ib$.

Related Question