Is there any other simpler method to evaluate $\int_0^{\infty} \frac{x^n-2 x+1}{x^{2 n}-1} d x,$ where $n\geq 2?$

calculusdefinite integralsimproper-integralsintegrationpower series

Though $n\geq 2$ is a real number, which is not necessarily an integer, we can still resolve the integrand into two fractions,

$$\displaystyle I=\int_0^{\infty} \frac{x^n-2 x+1}{\left(1+x^n\right)\left(1-x^n\right)} d x=\int_0^{\infty}\left(\frac{x}{1+x^n}-\frac{1-x}{1-x^n}\right) d x=J-K\tag*{} $$
For the integral $J$, we are going to transforms it into a Beta function by letting $y=\frac{1}{1+x^n}$.

$$\displaystyle \begin{aligned}J & =\frac{1}{n} \int_0^1 y^{-\frac{2}{n}}(1-y)^{\frac{2}{n}-1} d y \\& =\frac{1}{n} B\left(-\frac{2}{n}+1, \frac{2}{n}\right) \\& =\frac{\pi}{n} \csc \left(\frac{2 \pi}{n}\right) \quad \textrm{ (By Euler Reflection Formula)}\end{aligned}\tag*{} $$


Next, we are going to evaluate the integral
$ \displaystyle K=\displaystyle \int_{0}^{\infty} \frac{1-x}{1-x^{n}} d x \tag*{} $
by the theorem
$ \displaystyle \displaystyle \sum_{k=-\infty}^{\infty} \frac{1}{k+z}=\pi \cot (\pi z), \textrm{ where } z\notin Z.\tag*{} $

We first split the integral into two integrals
$$ \displaystyle \displaystyle \int_{0}^{\infty} \frac{1-x}{1-x^{n}} d x=\int_{0}^{1} \frac{1-x}{1-x^{n}} d x+\int_{1}^{\infty} \frac{1-x}{1-x^{n}} d x \tag*{}$$

Transforming the latter integral by the inverse substitution $ x\mapsto \frac{1}{x}$ m, we have
$$\displaystyle \displaystyle \int_{1}^{\infty} \frac{1-x}{1-x^{n}} d x=\int_{0}^{1} \frac{x^{n-3}-x^{n-2}}{1-x^{n}} d x \tag*{} $$
Putting back yields
$ \begin{aligned}\displaystyle K&=\int_{0}^{1} \frac{1-x+x^{n-3}-x^{n-2}}{1-x^{n}} d x\\\displaystyle &=\int_{0}^{1}\left[\left(1-x+x^{n-3}-x^{n-2}\right) \sum_{k=0}^{\infty} x^{n k}\right] d x\\ \displaystyle & =\sum_{k=0}^{\infty} \int_{0}^{1}\left[x^{n k}-x^{n k+1}+x^{n(k+1)-3}-x^{n(k+1)-2}\right] d x\\ & =\sum_{k=0}^{\infty}\left(\frac{1}{n k+1}-\frac{1}{n k+2}+\frac{1}{n(k+1)-2}-\frac{1}{n(k+1)-1}\right)\\ & =\sum_{k=0}^{\infty}\left[\frac{1}{n k+1}-\frac{1}{n(k+1)-1}\right]+\sum_{k=0}^{\infty}\left[\frac{1}{n(k+1)-2}-\frac{1}{n k+2}\right] \end{aligned}\tag*{} $

Modifying yields
$$\displaystyle \begin{aligned} K&=\frac{1}{n}\left[\sum_{k=0}^{\infty} \frac{1}{k+\frac{1}{n}}+\sum_{k=-1}^{-\infty} \frac{1}{k+\frac{1}{n}}\right]+\frac{1}{n}\left(\sum_{k=1}^{\infty} \frac{1}{k-\frac{2}{n}}+\sum_{k=0}^{-\infty} \frac{1}{k-\frac{2}{n}}\right)\\& =\frac{1}{n}\left(\sum_{k=-\infty}^{\infty} \frac{1}{k+\frac{1}{n}}+\sum_{k=-\infty}^{\infty} \frac{1}{k-\frac{2}{n}}\right)\end{aligned} \tag*{} $$
By the Theorem,
$$ \displaystyle \displaystyle \sum_{k=-\infty}^{\infty} \frac{1}{k+z}=\pi \cot (\pi z), \tag*{} $$
where $ \displaystyle z\notin Z,$
we have
$$ \displaystyle \displaystyle K=\frac{1}{n}\left[\pi \cot \left(\frac{\pi}{n}\right)+\pi \cot \left(\frac{-2 \pi}{n}\right)\right]=\frac{\pi}{n}\left[\cot \left(\frac{\pi}{n}\right)-\cot \left(\frac{2 \pi}{n}\right)\right] =\frac{\pi}{n} \csc \frac{2 \pi}{n} =J\tag*{} $$


We can now conclude that
$\displaystyle \boxed{I=J-K=0 }\tag*{} $


Is there any other simpler method to evaluate $\int_0^{\infty} \frac{x^n-2 x+1}{x^{2 n}-1} d x,$ where $n\geq 2?$

Best Answer

Here is maybe the simplest proof\begin{align} &\int_0^{\infty} \frac{x^a-2 x+1}{x^{2 a}-1} d x\\ =& \int_0^{\infty} \frac{x^a-x}{x^{2 a}-1} d x - \int_0^{\infty} \frac{x-1}{x^{2 a}-1}\overset{x\to 1/x}{ d x}\\ =& \int_0^{\infty} \frac{x^{2a-3}-x}{x^{2 a}-1} d x - \int_0^{\infty} \frac{x^{2a-2}-x^a}{x^{2 a}-1}\overset{x\to x^2}{ d x}\\ =& \int_0^{\infty} \frac{x^{2a-3}-x}{x^{2 a}-1} d x -\int_0^{\infty} \frac{2(x^{4a-3}-x^{2a+1})}{(x^{2 a}-1)(x^{2 a}+1)}d x\\ =& \int_0^{\infty} \frac{x^{2a-3}-x}{x^{2 a}+1}\overset{x\to 1/x}{d x}=0 \end{align} Note that $a$ need not be an integer.