Is there a way to calculate the fractional moments of the Cauchy distribution without complex analysis

complex-analysisfourier analysisprobability

In Probability: Theory and Examples by Rick Durrett, he avoids complex analysis. For example, he calculates $\int_0^{\infty} \big(\sin(x)/x\big)\, dx$ by defining a bivariate function $f(x,y) = e^{-xy} \sin(x)$ on $(x,y) \in (0,\infty) \times (0,\infty)$ and calculating its integral in two different ways via Fubini. (In my first version of the question, I mistakenly called that function a pdf, but it is not nonnegative everywhere.) He does this instead of using Cauchy's integral formula from complex analysis. That integral is necessary for the inversion formula for the Fourier transform of probability measures on $\mathbb{R}$, which in turn gives the first general proof of the CLT in his book.

What I am interested in is his calculation of the characteristic function of the Cauchy distribution which he also gets without complex analysis. He calculates the Fourier transform of the pdf $\frac{1}{2} e^{-|x|}$ and then uses a special inversion formula in the special case that the c.f. is $L^1$. But I am wondering how far this avoidance of $\mathbb{C}$-analysis can go. I am trying to come up with a problem that will require complex analysis.

If we take $\mathsf{X}$ to be a Cauchy r.v., with pdf $f(x) = \pi^{-1} (1+x^2)^{-1}$ on $(-\infty,\infty)$,
can you calculate $\mathbf{E}[|\mathsf{X}|^{p}] = \sec(\pi p/2)$ for $-1<p<1$ without using complex analysis, i.e., without using Cauchy's integral formula from complex analysis?

Best Answer

Solution using Fourier series

$$\begin{split} \int_{\mathbb R}\frac {|x|^p}{1+x^2}dx &= 2\int_0^{+\infty}\frac {x^p}{1+x^2}dx\\ &=2\left(\int_0^1\frac {x^p}{1+x^2}dx+\int_1^{+\infty}\frac {x^p}{1+x^2}dx\right)\\ &=\int_0^1\frac {u^{\frac p 2-\frac 1 2}}{1+u}du+\int_0^{1}\frac {y^{-\frac p2-\frac 1 2}}{1+y}dy \,\,\,\,\text{ with }u=x^2 \text{ and }y=\frac 1 {x^2} \end{split}$$ We thus need to compute, for $-1<\alpha<1$ $$\int_0^1\frac{v^{\alpha}}{1+v}dv =\int_0^1\sum_{n\in\mathbb N}(-1)^nv^{\alpha+n}dv=\sum_{n\in\mathbb N}(-1)^n\int_0^1v^{\alpha+n}dv=\sum_{n\in\mathbb N}\frac{(-1)^n}{\alpha+n+1}$$ In other words, $$\begin{split} \int_{\mathbb R}\frac {|x|^p}{1+x^2}dx &= \sum_{n\in\mathbb N}\frac{(-1)^n}{n+\frac p 2+\frac 1 2}+\sum_{n\in\mathbb N}\frac{(-1)^n}{n-\frac p 2+\frac 1 2}\\ &=\sum_{n\in\mathbb N}\frac{(-1)^n}{n-\frac p 2+\frac 1 2} + \sum_{n\in\mathbb N}\frac{(-1)^n}{-n+\frac p 2-\frac 1 2}\\ &= \sum_{n\in\mathbb N}\frac{(-1)^n}{n-\frac p 2+\frac 1 2} + \sum_{n\geq 1}\frac{(-1)^n}{-n-\frac p 2+\frac 1 2}\,\,\,\text{ (second index shifted by 1)}\\ &= \frac{1}{\frac 1 2 - \frac p 2} + (1-p)\sum_{n\geq 1}\frac{(-1)^{n+1}}{n^2-\left(\frac 1 2-\frac p 2\right)^2} \end{split}$$ This classic sum can be computed via Fourier series, among other ways. For $s\notin \mathbb Z$, define $f_s$ as the $2\pi$-periodic function defined by $f_s(t)=\cos(st)$ for $|t|<\pi$. You can verify that its Fourier series expansion is $$\cos{st} = \frac{\sin{\pi s}}{\pi s} \left [1+2 s^2 \sum_{n\geq 1}\frac{(-1)^{n+1} \cos{n t}}{n^2-s^2} \right ]$$ Evaluating at $t=0$ gives $$\frac{\pi}{\sin(\pi s)}=\frac 1 s + 2s\sum_{n\geq 1}\frac{(-1)^{n+1} }{n^2-s^2}$$ Thus, plugging in $s=\frac 1 2 - \frac p 2$, $$\int_{\mathbb R}\frac {|x|^p}{1+x^2}dx=\frac {\pi}{\cos\left(\frac {\pi p} 2\right)}$$