Probability Theory – Investigating the Closed Form for Distribution of $T = \sum_{k=0}^\infty 2^{-k} X_k$

probability distributionsprobability theorystatistics

Let
$$T = \sum_{k=0}^\infty 2^{-k} X_k$$

Where each $X_k \sim \text{Exp}(1)$ is i.i.d. as an exponential random variable with $\lambda = 1$. Is there a closed form for the pdf or cdf of $T$?

Best Answer

A few notes that might be helpful.

Suppose $0 < a_0 < a_1 < \cdots$ and that $X$ has density \begin{equation*} f(x) = \sum_{m=0}^{M-1} C_m e^{-a_m x} \end{equation*} on $x \geq 0$, where the $C_m$ are not necessarily nonnegative, and that $Y$ is independent and distributed as $a_M e^{-a_M y}$, $y \geq 0$. Then $Z = X + Y$ has density \begin{align*} f_Z(z) &= \int_0^z f(x) a_M e^{-a_M(z - x)}\, dx \\ &= \int_0^z\, \sum_{m=0}^{M-1}a_M C_m e^{-a_mx}e^{-a_Mz + a_Mx}\, dx \\ &= \sum_{m=0}^{M-1}a_M C_m e^{-a_Mz}\int_0^z\, e^{-a_mx}e^{a_Mx}\, dx \\ &= \sum_{m=0}^{M-1}a_M C_m e^{-a_Mz}\int_0^z\, e^{(a_M - a_m)x}\, dx \\ &= \sum_{m=0}^{M-1}\frac{a_M C_m}{a_M - a_m} e^{-a_Mz} (e^{(a_M - a_m)z} - 1) \\ &= \sum_{m=0}^{M-1}\frac{a_M C_m}{a_M - a_m} (e^{-a_mz} - e^{-a_Mz}) \\ &= \sum_{m=0}^{M-1}\frac{a_M C_m}{a_M - a_m} e^{-a_mz} - \bigl( \sum_{m=0}^{M-1}\frac{a_M C_m}{a_M - a_m}\bigr) e^{-a_Mz} \end{align*} which shows $f_Z$ has a form similar to the above: \begin{equation*} f_Z(z) = \sum_{m=0}^M C'_m e^{-a_m z} \end{equation*} with \begin{equation*} C'_m = \frac{a_M C_m}{a_M - a_m} \end{equation*} for $m = 0, \dots, M-1$ and \begin{equation*} C'_M = -\sum_{m=0}^{M-1} \frac{a_M C_m}{a_M - a_m}. \end{equation*} This lends itself to an iteration constructing the limiting density as $M \rightarrow \infty$, at least when it exists.

The original question involves $a_m = 2^m$ so we expect a density of the form \begin{equation*} f_\infty(z) = D_0e^{-z} + D_1e^{-2z} + D_2e^{-4z} + D_3e^{-8z} + \dots \end{equation*} The recursion for the leading coefficient yields $D_0 = 1/ \prod_{k=1}^\infty (1 - 2^{-k}) \approx 3.462746619$.

Limiting density

ADDED

The first few coefficients, computed using the recurrence above, are

\begin{align*} m &\qquad\qquad D_m \\ 0 &\qquad +3.46274662e+00 \\ 1 &\qquad -6.92549324e+00 \\ 2 &\qquad +4.61699549e+00 \\ 3 &\qquad -1.31914157e+00 \\ 4 &\qquad +1.75885543e-01 \\ 5 &\qquad -1.13474544e-02 \\ 6 &\qquad +3.60236646e-04 \\ 7 &\qquad -5.67301805e-06 \\ 8 &\qquad +4.44942599e-08 \\ 9 &\qquad -1.74147636e-10 \end{align*}