Closed Form Expression for Infinite Sum in Real Analysis

binomial-coefficientscalculusreal-analysissequences-and-serieszeta-functions

I tried to find a closed form for the series
$$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}} $$
I got another form for the series by using the known series
$$\frac{1}{\sqrt{n^2-1}}=\frac{1}{n\sqrt{1-n^{-2}}}=\sum_{k=0}^\infty \binom{2k}{k} \frac{1}{4^kn^{2k+1}} , \forall n>1$$
So
$$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}}=\sum_{k=0}^\infty\binom{2k}{k} 2^{-2k} \left(\zeta(2k+2)-1 \right) $$
if there is no closed form can we get its integral representation ?

EDITION

here we have
$$ \binom{2k}{k} 2^{-2k}=\frac{2}{\pi}\int_0^\infty \frac{1}{(x^2+1)^{k+1}} dx$$
then
$$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}}=\frac{2}{\pi} \int_0^\infty \sum_{k=1}^\infty \frac{\zeta(2k)-1}{(x^2+1)^{k}} dx $$
and here we have the generation function of $\zeta(2n)$
$$ \sum_{n=1}^\infty \zeta(2n) x^n = \frac{1}{2} -\frac{\pi \sqrt{x}}{2} \cot(\pi \sqrt{x}) $$
finally
$$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}}=\frac{1}{\pi} \int_0^\infty \left(1-\frac{2}{x^2}-\frac{\pi}{\sqrt{x^2+1}} \cot \left(\frac{\pi}{\sqrt{x^2+1}} \right) \right) dx$$

Best Answer

Not an answer:

$$\sum _{n=2}^{\infty } \frac{1}{n \sqrt{n^2-1}}=\\\int_0^{\infty } \left(\mathcal{L}_n^{-1}\left[\frac{1}{n \sqrt{n^2-1}}\right](x)\right) \sum _{s=2}^{\infty } \exp (-s x) \, dx=\\\int_0^{\infty } \frac{\pi x (I_0(x) \pmb{L}_{-1}(x)-I_1(x) \pmb{L}_0(x)) e^{-x}}{2 \left(-1+e^x\right)} \, dx\approx0.69422401996922706=\sum _{m=0}^{\infty } \frac{(-1)^m \sqrt{\pi } (-1+\zeta (2+2 m))}{\Gamma \left(\frac{1}{2}-m\right) \Gamma (1+m)}$$

Where: $I_0(x)$ is modified Bessel function of the first kind, $\pmb{L}_0(x)$ is modified Struve function.

$\mathcal{L}_n^{-1}$ is Inverse Laplace Transform.

UPDATE:

Using:$$\int_0^1 \frac{1}{\left(n^2-x\right) \sqrt{x (1-x)} \pi } \, dx=\frac{1}{n \sqrt{n^2-1}}$$ we have: $$\int_0^1 \left(\sum _{n=2}^{\infty } \frac{1}{\left(n^2-x\right) \sqrt{x (1-x)} \pi }\right) \, dx=\int_0^1 -\frac{-1+3 x-\pi (-1+x) \sqrt{x} \cot \left(\pi \sqrt{x}\right)}{2 \pi (-((-1+x) x))^{3/2}} \, dx$$

Using:

$$\int_0^{\pi } \frac{2 x}{\pi ^2 \left(n^2-\cos ^2(x)\right)} \, dx=\frac{1}{n \sqrt{n^2-1}}$$

we have:

$$\int_0^{\pi } \left(\sum _{n=2}^{\infty } \frac{2 x}{\pi ^2 \left(n^2-\cos ^2(x)\right)}\right) \, dx=\\\int_0^{\pi } \left(-\frac{3 x \csc ^2(x)}{2 \pi ^2}-\frac{x \cot (\pi \cos (x)) \sec (x)}{\pi }+\frac{3 x \sec ^2(x)}{2 \pi ^2}-\frac{x \csc ^2(x) \sec ^2(x)}{2 \pi ^2}\right) \, dx$$