Is the metric space of polynomial of degree $\leq1$ complete with the following metric

cauchy-sequencescomplete-spacesgeneral-topologymetric-spaces

I must determine if the following metric space is complete

$$\mathbb R_1[x]\times \mathbb R_1[x]\rightarrow \mathbb R: d(p(x),q(x))=max\{|p(0)-q(0)|,|p(1)-q(1)|\}$$
where
$$\mathbb R_1[x]=\{p(x)=(ax+b)| a,b \in \mathbb R \}$$ is the subset of polynomials of degree $\leq 1$
Is $(\mathbb R_1[x],d) $complete?

my try:

Let $\{p(x)\}_n$ be a Cauchy sequence

by definition

$\forall \epsilon, \exists n_0, \forall n,m \geq n_0 $ $d(p_n(x),p_m(x))< \epsilon$

$$d(p_n(x),p_m(x))=max\{|p_n(0)-p_m(0)|,|p_n(1)-q_m(1)|\}$$
since the max should be greater than any of the arguments:
$$|p_n(0)-p_m(0)|\leq max\{|p_n(0)-p_m(0)|,|p_n(1)-q_m(1)|\}<\epsilon$$ and
$$|p_n(1)-p_m(q)|\leq max\{|p_n(0)-p_m(0)|,|p_n(1)-q_m(1)|\}<\epsilon$$
so(I am not sure)
this implies that $p_n(1)=a_n$
and $p_n(0)=b_n$ are Cauchy sequences

Does this make sense?
At this part I am stuck, how does this help me(if it is correct) to conclude if the space is complete or not? I should show somehow the Cauchy sequence is convergent

Best Answer

Consider the map$$\begin{array}{ccc}(\mathbb R_1[x],d)&\longrightarrow&\mathbb R^2\\p(x)&\mapsto&\bigl(p(0),p(1)\bigr).\end{array}$$It is a bijection and it becomes an isometry if we consider on $\mathbb R^2$ the metric $d_1$ defined by$$d_\infty\bigl((x_1,y_1),(x_2,y_2)\bigr)=\max\bigl\{\lvert x_1-x_2\rvert,\lvert y_1-y_2\rvert\bigr\}.$$But $(\mathbb R^2,d_\infty)$ is complete (in fact, $\mathbb R^n$ endowed with a metric induced from any norm is complete) and therefore $(\mathbb R_1[x],d)$ is complete too.

Related Question