Is $\sum _{n=1}^{\infty }\:\frac{\left|x\right|}{n^2}$ convergent

analysiscalculusconvergence-divergencereal-analysissequences-and-series

I'm studying the convergence and absolute convergence of the series of functions defined by the sequence of functions:
\begin{equation*}
f_n: \mathbb{R} \to \mathbb{R},
\end{equation*}

\begin{equation*}
\phantom{1000}x \mapsto \sin\left(\dfrac{x}{n^2}\right).
\end{equation*}

I got that $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}$:
\begin{equation*}
\left|\sin\left(\dfrac{x}{n^2}\right)\right| \le \dfrac{|x|}{n^2},
\end{equation*}

So I could apply the comparison criteria for series but im not sure if

$\sum _{n=1}^{\infty }\:\frac{\left|x\right|}{n^2}$ is convergent

Best Answer

It is a standard result that $$\sum_{n=1}^\infty\dfrac{1}{n^2} = \dfrac{\pi^2}{6}.$$ (The convergence can be proven with the comparison test.)

Thus, given any fixed $x \in \mathbb{R}$, the summation $$\sum_{n=1}^\infty\dfrac{|x|}{n^2} = |x|\cdot\sum_{n=1}^\infty\dfrac{1}{n^2}$$ does indeed converge.

Related Question