Functional Analysis – Is ||T|| = sup||x||=1?x, Tx? True?

analysisfunctional-analysishilbert-spacesoperator-theory

Let $H$ be a Hilbert space and $T$ be a bounded linear operator on this space. In a calculation a book I was reading, it seems to be implied that:
$$\|T\| = \sup_{\substack{\|x\|=1 \\ x \neq 0}}\langle x, Tx\rangle,$$
but I did not find this characterization of the norm anywhere else. Is this true? By Cauchy-Schwarz it is clearly true that:
$$\|T\| \le \sup_{\substack{\|x\|=1 \\ x \neq 0}}\langle x, Tx\rangle$$
holds, but the reverse inequality I don't know.

Best Answer

It is not necessarily true. Consider next example: let $H = \mathbb{R}^2$ with the dot product and $T(x_1, x_2) = (-x_2, x_1)$, then $\langle x, Tx\rangle = (x_1, x_2) \cdot (-x_2, x_1) = 0 \;\forall (x_1, x_2) \in \mathbb{R}^2$. Obviously $T$ is bounded operator with norm $\|T\| = \sup_{\|x\|=1} \|Tx\| = \sup_{\|x\|=1} \|x\|=1$ (since $\|Tx\|=\|x\|$).

However it is true that $\|T\| = \sup_{\substack{\|x\|=1, \|y\|=1}}\langle y, Tx\rangle$. This is obvious when $T \equiv 0$, overwise, we can find $x$, such that $\|x\|=1$ and $Tx \neq 0$. Take for them $y := \frac{Tx}{\|Tx\|}$, then $\|y\|=1$, therefore $$\sup_{\|y\|=\|x\|=1}\langle y, Tx\rangle = \sup_{\|y\|=\|x\|=1, Tx \neq 0}\langle y, Tx\rangle \geq \sup_{\|x\|=1, Tx \neq 0} \frac{\langle Tx, Tx\rangle}{\|Tx\|} = \sup_{\|x\|=1, Tx \neq 0} \|Tx\| = \|T\|$$

From the Cauchy inequality we know that $|\langle y, Tx\rangle| \leq \|y\| \cdot \|Tx\|$, therefore $\sup_{\substack{\|x\|=\|y\|=1}}\langle y, Tx\rangle \leq \sup_{\|x\|=1}\|Tx\| = \|T\|$.

Related Question