Inverse of matrix given by orthogonal unit vectors

inverselinear algebramatricesorthogonality

Let $v=\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, w=\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$, with $v,w\in\mathbb{R^3}$ be orthogonal unit vectors and
$$M:=\begin{pmatrix} 2v_1 & 3w_1 & v_2w_3-v_3w_2 \\ 2v_2 & 3w_2 & v_3w_1-v_1w_3 \\ 2v_3 & 3w_3 & v_1w_2-v_2w_1 \end{pmatrix}\in M(3\times3,\mathbb{R})$$
Assignment: Find $M^{-1}$.

At first I thought about row reducing $M$ but since we don't know which coordinates of $v$ are zero, that doesn't seem to work, except for solving it this way by looking at the different cases for the values of $v_1, v_2, v_3$.

Question: Is there a more elegant way to do this?

Best Answer

The third column of your matrix is $u\times w$. So, the three columns of $M$ are orthogonal, and therefore$$M^t.M=\begin{bmatrix}2\lVert v\rVert&0&0\\0&3\lVert w\rVert&0\\0&0&6\lVert v\rVert\lVert w\rVert\end{bmatrix}=\begin{bmatrix}2&0&0\\0&3&0\\0&0&6\end{bmatrix}.$$So$$M^{-1}=\begin{bmatrix}\frac12&0&0\\0&\frac13&0\\0&0&\frac16\end{bmatrix}.M^t.$$

Related Question