Inverse laplace transform of $\hat{f} (s) =\frac{1}{s(\cosh{\sqrt{2s}}-1)}$

complex-analysislaplace transformresidue-calculus

Doing some computations on a unknown but desirable function $f:[0,\infty) \to \Bbb R $ has lead me to that its Laplace transform can be known:

$$\hat{f} (s) = \frac{1}{s(\cosh{(\sqrt{2s})}-1)}, \quad s>0$$

I read that getting back the original function $f$ can be achieved using Mellin's inverse formula in combination with the residue theorem. Unfortunately, due to lack of experience with those theorems or complex integrals/analysis I am stuck at this point.
Any help is appreciated.

Best Answer

$$I:=\mathcal L^{-1}\left\{ \frac{1}{s(\cosh{(\sqrt{2s})}-1)} \right\}=\frac1{2\pi i}\int^{\gamma+i\infty}_{\gamma-i\infty}\underbrace{\frac{e^{st}}{s(\cosh{(\sqrt{2s})}-1)}}_{f(s)}ds$$ with $\gamma,t>0$.

Consider the integral $$\oint_C f(s)ds$$ where $C$ is the original integral path $\gamma-i\infty\to\gamma+i\infty$ plus a semicircle on the left.

Let's denote $a_n=-2n^2\pi^2$.

By estimation lemma, the arc integral vanishes. Thus, by residue theorem, $$I=\sum_{n=0}^\infty \operatorname{Res} (f(s),a_n)$$ (note that $f(s)$ is a meromorphic function on $\mathbb C$.)


Due to the Laurent/Taylor expansions at $s=a_n,n\ne 0$: $$\frac1{\cosh\sqrt{2s}-1}=\frac{4a_n}{(s-a_n)^{2}}+\frac2{s-a_n}+\cdots$$ $$\frac{e^{st}}{s}=\frac{e^{a_n t}}{a_n}+\frac{e^{a_n t}}{a_n^2}(a_nt-1)\cdot(s-a_n)+\cdots$$ we have $$\operatorname*{Res}_{s=a_n}f(s)=\left(4t-\frac{2}{a_n}\right)e^{a_n t}\qquad{n\ne 0}$$


Moreover, since $$\frac1{s(\cosh\sqrt{2s}-1)}=s^{-2}-\frac16 s^{-1}+\cdots$$ $$e^{st}=1+ts+\cdots$$ , we have $$\operatorname*{Res}_{s=0}f(s)=-\frac16 +t$$


Hence, $$I(t)=-\frac16+t+\sum^\infty_{n=1}\left(4t+\frac1{n^2\pi^2}\right)e^{-2\pi^2 n^2t}$$

A special value is $I(0)=0$.

On the other hand, for $t<0$, we can choose $C$ to be the semicircle on the right and use residue theorem to show $I(t)\equiv 0$.

Thoughts: By merely claiming $I(t)$ to be continuous at $0$, the above result leads to another proof of $\sum_1 \frac1{n^2}=\frac{\pi^2}6$.

Related Question