Interesting binomial coefficients sum: $\sum\limits_{i = 0}^b(-1)^i\binom{b}{i}\binom{a+b-i-1}{a-i}$

binomial-coefficientssummation

Any idea on whether or not $$\sum_{i = 0}^b(-1)^i\binom{b}{i}\binom{a+b-i-1}{a-i}$$
has a closed formula on $a$ and $b$ (and on what it is, in case it does)?

It is supposed that $b \le a$.

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\sum_{i = 0}^{b}\pars{-1}^{i} {b \choose i}{a + b - i - 1 \choose a - i}} \\[5mm] = &\ \sum_{i = 0}^{b}\pars{-1}^{i} {b \choose i}\bracks{z^{a - i}} \pars{1 + z}^{a + b - i - 1} \\[5mm] = &\ \bracks{z^{a}}\pars{1 + z}^{a + b - 1}\sum_{i = 0}^{b} {b \choose i}\pars{-\,{z \over 1 + z}}^{i} \\[5mm] = &\ \bracks{z^{a}}\pars{1 + z}^{a + b - 1}\,\, \pars{1 - {z \over 1 + z}}^{b} \\[5mm] = &\ \bracks{z^{a}}\pars{1 + z}^{a - 1} = \bbx{\large 0} \\ & \end{align}

Related Question