Interchange integration and differentiation

derivativeslebesgue-integralmultivariable-calculusreal-analysis

Let $x>0$. It can be shown that
$$ \int_{0}^{\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}t^{- \lambda}dt = \frac{\Gamma(\lambda – \frac{1}{2})}{4^{-\lambda +1}\sqrt{\pi}}|x|^{-2\lambda +1}~\lambda > \frac{1}{2}.$$
Let $-1<\lambda <0 $, then
$$ -\int_{0}^{\infty} \frac{\partial}{\partial x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}t^{- \frac{\lambda}{2}}dt = \int_{0}^{\infty} \frac{x}{2} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}t^{- \frac{\lambda + 2}{2} }dt,$$
which is integrable. I would like to prove that
$$ -\frac{\partial}{\partial x} \int_{0}^{\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}t^{- \frac{\lambda}{2}}dt = \int_{0}^{\infty} \frac{\partial}{\partial x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}t^{- \frac{\lambda}{2}}dt. $$
But I can't find integrable function $f(t)$ such that $|\frac{\partial}{\partial x} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}t^{- \frac{\lambda}{2}}| \leq f(t)$. Hence DTC can't be used. How can I justify differentiation under integral sign?

I would really appreciate any hints or tips.

Best Answer

Let's simplify. Assume $0<p<1/2.$ Is it true that

$$ \frac{\partial}{\partial x} \int_{0}^{\infty} e^{-x^2/t}t^{p-1/2} \, dt = \int_{0}^{\infty}\frac{\partial}{\partial x} e^{-x^2/t}t^{p-1/2} \, dt$$

for $x>0?$ The integral on the right is

$$= \int_{0}^{\infty}(-2x/t)e^{-x^2/t}t^{p-1/2}\,dt = \int_{0}^{\infty}(-2x)e^{-x^2/t}t^{p-3/2}\,dt.$$

Now suppose $x\in (a,b),$ where $0<a<b.$ Then the absolute value of the integrand on the right is bounded above by $2be^{-a^2/t}t^{p-3/2}$ for all such $x.$ That's a function in $L^1$ that dominates the integrands for all $x\in (a,b).$ You can now use DCT to get the desired result for all $x\in (a,b).$ Since every $x>0$ is in some like $(a,b),$ we have the result we wanted.

Related Question