Integrate $I(x) = \frac{1}{ 2 \pi} \int_{-\infty}^{\infty} \frac{e^{-Na}}{jt(1+jt)} e^{\frac{Na}{1+jt}} e^{jxt}dt $

contour-integrationdefinite integralsimproper-integralsintegrationspecial functions

I want to integrate:

$$I(x) = \frac{1}{ 2 \pi} \int\limits_{-\infty}^{\infty} \frac{e^{-Na}}{jt(1+jt)} e^{\frac{Na}{1+jt}} e^{jxt} \,dt $$

Where $j = \sqrt{-1}$, $a \in \mathbb{R_{++}}$ and $N \in \mathbb{Z_{++}}$

The solution is apparently:

$$ I(x) = e^{-Na} \int_{0}^{x} e^{-y} I_{0}(2 \sqrt{Nay})\,dy $$

where $I_{0}(\cdot)$ is the modified Bessel function of the 1st kind of order 0.


It looks like I should be going for an answer of the form:

$$I(x) = e^{-Na} \big( F(T) – F(0) \big)$$

Where $F(\cdot)$ is the antiderivative of $e^{-x} I_{0}(2 \sqrt{Nax})$ wrt x.


My approach:

We start off by taking out $e^{-Na}$ and writing $e^{\frac{Na}{1+jt}}$ as a power series. This gives us:

$$I(x) = \frac{e^{-Na}}{2 \pi} \displaystyle\int\limits_{-\infty}^{\infty} \frac{1}{jt(1+jt)} \displaystyle\sum\limits_{k=0}^{\infty} \frac{(Na)^{k}}{k! (1+jt)^{k}} e^{jxt} dt $$

Bringing the sum out and combining gives us:

$$I(x) = \frac{e^{-Na}}{2 \pi} \displaystyle\sum\limits_{k=0}^{\infty}
\frac{(Na)^{k}}{k!}\displaystyle\int\limits_{-\infty}^{\infty} \frac{(Na)^{k}}{jt(1+jt)^{k+1}} e^{jxt} dt $$

This is where I get stuck. The result of the integral is obviously the sum of the residues, but I can't seem to reconcile that with the stated result.

Can somebody help? What is that antiderivative anyway? I am quite lost here.


One interesting trick:

We have the Fourier transform pair:

$$ \int_{-\infty}^{t} x(\gamma) d\gamma <-> \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega) $$

Where $X(\cdot)$ is the FT pair of $x(\cdot)$.

Best Answer

We want to solve the following integral:

$$ I(x) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{jt(1+jt)} e^{\frac{-jNat}{1+jt}} e^{jxt} dt $$

To solve, we first recall a property of the Fourier transform. Namely:

$$ F^{-1}\big\{ \frac{G(t)}{jt} \big\} = \int_{-\infty}^{x} g(\tau) d\tau $$

where $g(x)$ is the inverse Fourier transform of $G(t)$, and $\int_{-\infty}^{\infty} g(\tau) d\tau = 0$. Thus we only need to solve:

$$ I_{1}(x) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{1+jt} e^{\frac{-jNat}{1+jt}} e^{jxt} dt $$

So, we start solving this integral by noticing:

$$ e^{\frac{-jNat}{1+jt}} = e^{-Na} e^{\frac{Na}{1+jt}} $$

Thus:

$$ I_{1}(x) = \frac{e^{-Na}}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{1+jt} e^{\frac{Na}{1+jt}} e^{jxt} dt $$

We use the power series of $e^{\frac{Na}{1+jt}}$ in the integral:

$$ I_{1}(x) = \frac{e^{-Na}}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{1+jt} \sum_{k=0}^{\infty} \frac{(Na)^{k}}{k!(1+jt)^{k}} e^{jxt} dt $$

Pulling out the constants and interchanging the sum and integral because the sum is convergent, we get:

$$ I_{1}(x) = \frac{e^{-Na}}{2 \pi} \sum_{k=0}^{\infty} \frac{(Na)^{k}}{k!} \int_{-\infty}^{\infty} \frac{1}{(1+jt)^{k+1}} e^{jxt} dt $$

The integral is the inverse Fourier transform of $\frac{1}{(1+jt)^{k+1}}$, which can be found either by the residue theorem using a contour in the upper half plane or by consulting Fourier tables. We get:

$$ I_{1}(x) = \frac{e^{-Na}}{2 \pi} \sum_{k=0}^{\infty} \frac{(Na)^{k}}{k!} \frac{2 \pi}{k!} x^{k} e^{-x} $$

Noting that:

$$I_{0}(x) = \sum_{k=0}^{\infty} \frac{\big(\frac{x}{2}\big)^{2k}}{k! \Gamma(k+1)}$$

Thus taking out the $e^{-x}$ and combining the powerts, we have:

$$ I_{1}(x) = e^{-x - Na} I_{0}(2 \sqrt{Nax})$$

So using the integration property of the Fourier transform mentioned earlier:

$$ I(x) = e^{-Na} \int_{0}^{x} e^{-y} I_{0}(2 \sqrt{Nay}) dy $$

since $I_{0}(x) = 0 \forall x <0$. This is the solution we were looking for.