Integrate $\int_0^a\sqrt{\frac{1}{x}-\frac{1}{a}}\cosh\left(\sqrt{x}\right)\textrm{d}x$

definite integralsintegration

How to solve the integral
$$\int_0^a\sqrt{\frac{1}{x}-\frac{1}{a}}\cosh\left(\sqrt{x}\right)\textrm{d}x=\pi I_1(\sqrt{a})$$
where $a>0$ and $I_1$ is the modified Bessel function of $1^\textrm{st}$ kind and order $1$? Mathematica gives the solution but Rubi not, so it seems there is no simple integration procedure.

Edit: Related question concerning Mathematica

Best Answer

From the Digital Library of Mathematical Functions we have the integral formula $$ I_{\nu}(z) =\frac{\left(\frac{1}{2}z \right)^{\nu}}{\pi^{\frac{1}{2}}\Gamma\left(\nu + \frac{1}{2}\right)}\int_{-1}^{1}\left(1-t^2\right)^{\nu - \frac{1}{2}}e^{\pm zt} \ dt, \qquad \Re(\nu) > -\frac{1}{2} $$ Which for the case of $\nu=1$ reduces to$$ I_{1}(z) =\frac{z}{\pi}\int_{-1}^{1}\sqrt{1-t^2}e^{\pm zt} \ dt $$ Notice that because we can choose either the "plus" or "minus" symbol on the exponential and still get the same $I_{1}(z)$, we can say that \begin{align*} I_{1}(z) &= \frac{I_{1}(z) + I_{1}(z)}{2} \\ & =\frac{z}{\pi}\int_{-1}^{1}\sqrt{1-t^2}\frac{e^{\color{blue}{+}zt}}{2} \ dt + \frac{z}{\pi}\int_{-1}^{1}\sqrt{1-t^2}\frac{e^{\color{blue}{-}zt}}{2} \ dt\\ & =\frac{z}{\pi}\int_{-1}^{1}\sqrt{1-t^2}\frac{e^{\color{blue}{+}zt}+e^{\color{blue}{-}zt}}{2} \ dt \\ & =\frac{z}{\pi}\int_{-1}^{1}\sqrt{1-t^2}\cosh(zt) \ dt \\ & =\color{purple}{2}\frac{z}{\pi}\int_{\color{purple}{0}}^{1}\sqrt{1-t^2}\cosh(zt) \ dt \end{align*} where on the last step you notice that $\sqrt{1-t^2}\cosh(zt)$ is an even function in $t$. Lastly, we just need to make the change of variable $zt = \sqrt{x}\implies zdt =\frac{1}{2\sqrt{x}} dx$. We thus get \begin{align*} \pi I_{1}(z)& =2 z\int_{0}^{z^2}\sqrt{1-\frac{x}{z^2}}\cosh(\sqrt{x})\frac{1}{2z \sqrt{x}} \ dx =\int_{0}^{z^2}\sqrt{\frac{1}{x}-\frac{1}{z^2}}\cosh(\sqrt{x}) \ dx \end{align*} which gives your desired integral with $z^2 = a$.

Related Question