Integral using Gamma and Beta function

beta functiongamma functionintegrationspecial functions

the integral I have found this integral on past exams papers for a course in Mathematical Methods of Physics. I really cant find any material on the textbook which could be helpfull for the solution. Do you have any idea how to solve this or can you suggest any material I could use? I post the question in the picture bellow. I have to express the solution using Beta and Gamma functions. Any help would be valuable. Thanks in advance!

Thanks for the edit, its the 1st time I post here, sorry if my post was wrong

$$\int_{\mathbb{R}^n}(a+|x|)^m\exp\left(-\lambda\left[\sum_{i=1}^nx_i^2\right]^k\right)d^nx$$
$$x=\mathbb{R}^n,k>0,m\in\mathbb{N},\Re(\lambda)>0$$

Best Answer

Deriving the Surface Area of a Sphere

Start with the $1$ dimensional integral $$ \int_{-\infty}^\infty e^{-\pi x^2}\,\mathrm{d}x=1\tag1 $$ and take the product of $n$ copies: $$ \int_{-\infty}^\infty\int_{-\infty}^\infty\cdots\int_{-\infty}^\infty e^{-\pi \left(x_1^2+x_2^2+\cdots+x_n^2\right)}\,\mathrm{d}x_1\,\mathrm{d}x_2\cdots\,\mathrm{d}x_n=1\tag2 $$ Since the integrand is constant over spherical shells, we can easily write it as a spherical integral $$ \int_0^\infty e^{-\pi r^2}\omega_{n-1}r^{n-1}\,\mathrm{d}r=1\tag3 $$ where $\omega_{n-1}$ is the surface area of the $n-1$ dimensional unit sphere.

Thus, we get $$ \begin{align} 1 &=\int_0^\infty e^{-\pi r^2}\omega_{n-1}r^{n-1}\,\mathrm{d}r\tag{4a}\\ &=\frac{\omega_{n-1}}2\int_0^\infty e^{-\pi r^2}r^{n-2}\,\mathrm{d}r^2\tag{4b}\\ &=\frac{\omega_{n-1}}2\int_0^\infty e^{-\pi r}r^{n/2-1}\,\mathrm{d}r\tag{4c}\\ &=\frac{\omega_{n-1}}{2\pi^{n/2}}\int_0^\infty e^{-r}r^{n/2-1}\,\mathrm{d}r\tag{4d}\\ &=\frac{\omega_{n-1}}{2\pi^{n/2}}\Gamma(n/2)\tag{4e} \end{align} $$ Explanation:
$\text{(4a)}$: copy $(3)$
$\text{(4b)}$: $r\,\mathrm{d}r=\frac12\mathrm{d}r^2$ and pull the constant out front
$\text{(4c)}$: substitute $r\mapsto r^{1/2}$
$\text{(4d)}$: substitute $r\mapsto r/\pi$
$\text{(4e)}$: definition of the Gamma function

Therefore, we get $$ \omega_{n-1}=\frac{2\pi^{n/2}}{\Gamma(n/2)}\tag5 $$


Application to the Question

We can write the integral from the question as an integral on spherical shells: $$ \begin{align} &\int_0^\infty\overbrace{(a+r)^me^{-\lambda r^{2k}}}^{\substack{\text{integrand on a}\\\text{shell of radius $r$}}}\overbrace{\omega_{n-1}r^{n-1\vphantom{r^2}}}^{\substack{\text{surface area}\vphantom{g}\\\text{of the shell}}}\,\mathrm{d}r\tag{6a}\\ &=\frac{\omega_{n-1}}{2k}\sum_{j=0}^m\binom{m}{j}\int_0^\infty a^{m-j}r^{\frac{j+n}{2k}-1}e^{-\lambda r}\,\mathrm{d}r\tag{6b}\\ &=\frac{\omega_{n-1}}{2k}\sum_{j=0}^m\binom{m}{j}a^{m-j}\lambda^{-\frac{j+n}{2k}}\int_0^\infty r^{\frac{j+n}{2k}-1}e^{-r}\,\mathrm{d}r\tag{6c}\\ &=\frac{\omega_{n-1}}{2k}\sum_{j=0}^m\binom{m}{j}a^{m-j}\lambda^{-\frac{j+n}{2k}}\Gamma\!\left(\frac{j+n}{2k}\right)\tag{6d} \end{align} $$ Explanation:
$\text{(6a)}$: integral from the question
$\text{(6b)}$: substitute $r\mapsto r^{\frac1{2k}}$ and apply the Binomial Theorem
$\text{(6c)}$: substitute $r\mapsto r/\lambda$
$\text{(6d)}$: definition of the Gamma function

Related Question