Integral representation of Zeta function

gamma functionriemann-zetasequences-and-series

Currently studying Complex Analysis and was baffled by the following
$$
\Gamma(s) \zeta(s)=\sum_{n=1}^{\infty} \frac{\Gamma(s)}{n^{s}}=\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{e^{-t} t^{s-1}}{n^{s}} \mathrm{d} t=\int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-n t} t^{s-1} \mathrm{d} t
$$

How does one obtain the right hand side from the equation before it?

Best Answer

The correct way to derive the formula is \begin{align*} \Gamma (s)\zeta (s) = \sum\limits_{n = 1}^\infty {\frac{{\Gamma (s)}}{{n^s }}} = \sum\limits_{n = 1}^\infty {\int_0^{ + \infty } {\mathrm{e}^{ - t} \frac{{t^{s - 1} }}{{n^s }}\mathrm{d}t} }&\, \mathop = \limits^{t = nx} \,\sum\limits_{n = 1}^\infty {\int_0^{ + \infty } {\mathrm{e}^{ - nx} x^{s - 1}\, \mathrm{d}x} } \\ &\;\, = \int_0^{ + \infty } {\sum\limits_{n = 1}^\infty {\mathrm{e}^{ - nx} } x^{s - 1} \,\mathrm{d}x} . \end{align*}

Related Question