Integration – Solving Integral Related to Elliptic and Gamma Functions

beta functiondefinite integralselliptic integralsgamma functionintegration

Context:

While playing with this integral:

$$I(k)=\int_{0}^{\pi/2}\frac{\sqrt{1+\sqrt{1-k^2\sin^2x}}}{\sqrt{1-k^2\sin^2x}}dx\tag{1}.$$
Then I noticed:
$$I(1/3)=\sqrt{3}\int_{0}^{\pi/2}\frac{\sqrt{3+\sqrt{\cos^2x+8}}}{\sqrt{8+\cos^2x}}dx=\frac{\sqrt{6}\Gamma{(1/4)}^2}{8\sqrt{\pi}}\tag{2}.$$
So I found that $(1)$ is:
$$I(k)=\frac{\sqrt{2}K(\sqrt{\frac{2k}{1+k}})}{\sqrt{1+k}}\tag{3}.$$
Where:
$$K(k)=\int_{0}^{\pi/2}\frac{dx}{\sqrt{1-k^2\sin^2x}},\tag{4}$$
is the complete elliptic of the first kind.

Updated

Some work with $(2)$ shows that is equivalent to:
$$\Re(K(3+2\sqrt{2}))=\frac{\Gamma{(1/4)}^2\left(\frac{1}{8}-\frac{\sqrt{2}}{16} \right)}{\sqrt{\pi}}\tag{5}.$$

Question:

Can we prove $(2)$ using only Beta function? Thanks for your cooperation.

Best Answer

Finally I was able to compute $(2)$ via Beta function. $$I=\sqrt{3}\int_{0}^{\pi/2}\frac{\sqrt{3+\sqrt{\cos^2x+8}}}{\sqrt{8+\cos^2x}}dx \overset{x=\arccos{y}} = \\ \sqrt{3}\int_{0}^{1}\frac{1}{\sqrt{1-y^2}}\sqrt{\frac{1}{\sqrt{y^2+8}}+\frac{3}{y^2+8}}dy \overset{y=\sqrt{1-x^2}}= \\ \sqrt{3}\int_{0}^{1}\frac{\sqrt{3\sqrt{9-x^2}-x^2+9}}{\sqrt{1-x^2}(9-x^2)^{3/4}}dx \overset{x=3y}= \\ 3\int_{0}^{1/3}\frac{\sqrt{\sqrt{1-y^2}-y^2+1}}{\sqrt{1-9y^2}(1-y^2)^{3/4}}dy \overset{y=\sqrt{x}}= \\ \frac{3}{2}\int_{0}^{1/9}\frac{\sqrt{\sqrt{1-x}-x+1}}{\sqrt{x(1-9x)}(1-x)^{3/4}}dx \overset{x=1-y}= \\ \frac{3}{2}\int_{8/9}^{1}\frac{\sqrt{\sqrt{y}+1}}{\sqrt{y(1-y)(9y-8)}}dy \overset{y=x^2}=\\ 3\int_{\frac{2\sqrt{2}}{3}}^{1}\frac{dx}{\sqrt{1-x}\sqrt{9x^2-8}} \overset{x=\frac{y}{3}}= \\ \sqrt{3}\int_{2\sqrt{2}}^{3}\frac{dy}{\sqrt{3-y}\sqrt{y^2-8}} \overset{y=3-x}= \\ \sqrt{3}\int_{0}^{3-2\sqrt{2}}\frac{dx}{\sqrt{x}\sqrt{x^2-6x+1}} \overset{x=\frac{y-1}{y+1}}= \\ \sqrt{3}\int_{1}^{\sqrt{2}}\frac{dy}{\sqrt{2-y^2}\sqrt{y^2-1}} \overset{y=\sqrt{2}x}= \\ \sqrt{3}\int_{\frac{1}{\sqrt{2}}}^{1}\frac{dx}{\sqrt{1-x^2}\sqrt{2x^2-1}} \overset{x=\sqrt{y}}= \\ \frac{\sqrt{3}}{2}\int_{1/2}^{1}\frac{dy}{\sqrt{y}\sqrt{1-y}\sqrt{2y-1}} \overset{y=x+1/2}= \\ \frac{\sqrt{6}}{2}\int_{0}^{1/2}\frac{dx}{\sqrt{x}\sqrt{1-4x^2}} \overset{x=y/2}= \\ \frac{\sqrt{3}}{2}\int_{0}^{1}\frac{dy}{\sqrt{y}\sqrt{1-y^2}} \overset{y=x^2}= \\ \sqrt{3}\int_{0}^{1}\frac{dx}{\sqrt{1-x^4}}. $$ And it is well known that this last integral is evaluated using Beta function.

Related Question