Integration – Integral of Legendre and Chebyshev Polynomials

chebyshev polynomialsintegrationlegendre polynomials

I am trying to expand Legendre polynomials into Chebyshev polynomials, shown as:
$$P_{n}(x)=\sum_{k=0}^{n}a_{k}T_{k}(x), $$
where $P_{n}$ is Legendre polynomials and $T_{k}$ is Chebyshev polynomials, and $a_{k}$ are unknown coefficients.

As the Orthogonality of Chebyshev polynomial is
$$\int_{-1}^{1}T_{j}(x)T_{k}(x)\frac{1}{\sqrt{1-x^2}}dx=\frac{\pi}{2}\delta_{jk},\quad j^{2}+k^{2}\neq0,$$
so
$$a_{k}(n,k)=\frac{2}{\pi}\int_{-1}^{1}P_{n}(x)T_{k}(x)\frac{1}{\sqrt{1-x^2}}dx.$$
But i do not how to do this integral analytically. Сan anyone help? Many thanks!

Best Answer

Basically you're asking about the Fourier expansion of $$P_n(\cos\theta)=\frac{a_{n,0}}{2}+\sum_{k=1}^n a_{n,k} T_k(\cos\theta)=\frac{a_{n,0}}{2}+\sum_{k=1}^n a_{n,k}\cos k\theta.$$

A relatively easy way is to consider the generating function $$\sum_{n=0}^\infty P_n(\cos\theta)t^n=(1-2t\cos\theta+t^2)^{-1/2}=(1-te^{i\theta})^{-1/2}(1-te^{-i\theta})^{-1/2}$$ and use the binomial series $$(1-z)^{-1/2}=\sum_{n=0}^\infty b_n z^n,\qquad b_n=\frac{(2n-1)!!}{(2n)!!}$$ (here $0!!=(-1)!!=1$). Computing the product, we find $$\sum_{n=0}^\infty P_n(\cos\theta)t^n=\sum_{j,k=0}^\infty b_j b_k t^{j+k}e^{i(j-k)\theta}=\sum_{n=0}^\infty t^n\sum_{k=0}^n b_k b_{n-k}e^{i(n-2k)\theta}.$$

Hence, "renaming" the indices, $$a_{n,k}=\begin{cases}\hfill 0,\hfill&n-k\text{ is odd}\\2b_{(n-k)/2}b_{(n+k)/2},&n-k\text{ is even}\end{cases}.$$