Integral of $\int\limits_0^{2\pi } {\operatorname{erfc}\left( {\cos \left( {a + \theta } \right)} \right)d\theta } $

definite integralsimproper-integralsindefinite-integralsintegration

I am sorry if it does not fit here. I found some of the integral for the complementary error function e.g.

enter image description here

So far I did not find any integral regarding,

$\int\limits_0^{2\pi } {\operatorname{erfc}\left( {\cos \left( {a + \theta } \right)} \right)d\theta } $

Or, $\int\limits_0^{2\pi } {\operatorname{erfc}\left( {\cos \left( {a + \theta } \right)} \right)\operatorname{erfc}\left( {\sin \left( {a + \theta } \right)} \right)d\theta } $

  1. Is it not possible to find the closed form of the integral of complimentary error function with trigonometric function inside.
  2. Can anyone share me any integral of complimentary error function that has trigonometric function inside as argument?

Best Answer

If $g(x)$ is periodic with a period $T$, then $$\int_{k}^{T+k} g(x) dx=\int_{0}^{T} g(x) dx ~~~~~(1)$$ $$I=\int_{0}^{2\pi} \text{Erfc}[\cos(a+t)] dt=\int_{a}^{2\pi+a} \text{Erfc}[\cos x] dx=\int_{0}^{2\pi} \text{Erfc}(\cos x) dx~~~~(2)$$ Next note the property that $$\int_{0}^{2a} f(x) dx=\int_{0}^{a}[ f(x)x+ f(2a-x)] dx~~~~(3).$$ As $\cos(2\pi-x)=\cos x,$ we get $$I=2\int_{0}^{\pi} \text{Erf}(\cos x) dx~~~~(4)$$ Again using (3), we get $$I=2[\int_{0}^{\pi/2}[\text{Erfc}(\cos x)+ \text{Erfc} (-\cos x)]dx=2\pi,~~~~(5)$$ as $\text{Erfc}(z)+\text{Erfc}(-z)=2$.

Edit: Now we take up the pther integral $$J=\int_{0}^{2\pi} [\text{Erfc}(a+\sin x) ~\text{Erfc}(a+\cos x)] dx$$ Due to the property (1) again, we get $J$ independent of $a$ $$J=\int_{0}^{2\pi} [\text{Erfc}(\sin x) ~\text{Erfc}(\cos x)] dx$$ Using (3) again, we get $$J=\int_{0}^{\pi} [[\text{Erfc}(\sin x) ~\text{Erfc}(\cos x)+[\text{Erfc}(-\sin x) ~\text{Erfc}(\cos x)] dx$$ Next, use $\text{Erf}(-z)=2-\text{Erf}(z)$, to write from (4) and (5) $$J=2\int_{0}^{\pi} \text{Erf}(\cos x) dx= I=2\pi$$