Integral of Bessel function, power, and hyperbolic cosecant

asymptoticsbessel functionsdefinite integralsintegrationspecial functions

I have the integral

$$
I(a)=\int\limits_0^\infty dk \ \frac{k^3J_1(ak)}{\sinh(k )}
$$

Where $J_1$ is a Bessel function of the first kind. By plotting the integrand, it seems $I(a)$ exists as the integrand is finite and goes to zero for large $k$. I wonder if $I(a)$ may be expressed in `common' special functions? Mathematica does not evaluate it, and I have been unable to find it in Gradshtein.

I have been able to find an approximation to $I(a)$ as $a \to 0$ by replacing $J_1$ with its asymptotic form for small argument. Unfortunately, in my application the interesting case is $a\to \infty$. If $I(a)$ cannot be simplified, how can we develop an approximation to it for large $a$?

Background: The integral arises in a Laplacian boundary value problem for the induced charge on a grounded plate.

Best Answer

By $(10.22.49)$ and $(15.4.19)$ in the DLMF, we find \begin{align*} & \int_0^{ + \infty } {\frac{{t^3 }}{{\sinh t}}J_1 (at)dt} = 2\int_0^{ + \infty } {t^3 e^{ - t} \frac{1}{{1 - e^{ - 2t} }}J_1 (at)dt} \\ & = 2\int_0^{ + \infty } {t^3 \sum\limits_{n = 0}^\infty {e^{ - (2n + 1)t} } J_1 (at)dt} \\ & = 2\sum\limits_{n = 0}^\infty {\int_0^{ + \infty } {t^3 } e^{ - (2n + 1)t} J_1 (at)dt} \\ & = 24a\sum\limits_{n = 0}^\infty {\frac{1}{{(2n + 1)^5 }}F\!\left( {\frac{5}{2},3;2; - \frac{{a^2 }}{{(2n + 1)^2 }}} \right)} \\ & = 24a\sum\limits_{n = 0}^\infty {\left( {(2n + 1)^2 - \frac{{a^2 }}{4}} \right)\frac{1}{{((2n + 1)^2 + a^2 )^{7/2} }}} \\ &= 24a\sum\limits_{n = 0}^\infty {\frac{1}{{((2n + 1)^2 + a^2 )^{5/2} }}} - 30a^3 \sum\limits_{n = 0}^\infty {\frac{1}{{((2n + 1)^2 + a^2 )^{7/2} }}} \end{align*} provided $\Re a>0$. Here $F$ stands for the hypergeometric function.

Addendum. I shall give the asymptotics for $a\to +\infty$. Let us introduce the generalised Mathieu series via $$ S_{\mu ,\gamma } (a;\lambda ) = \sum\limits_{n = 1}^\infty {\frac{{n^\gamma }}{{(n^\lambda + a^\lambda )^\mu }}} \quad \quad (\mu > 0,\quad \lambda > 0,\quad \lambda \mu - \gamma > 1). $$ With this notation $$ \sum\limits_{n = 0}^\infty {\frac{1}{{((2n + 1)^2 + a^2 )^\mu }}} = S_{\mu ,0} (a;2) - 4^{ - \mu } S_{\mu ,0} (a/2;2) $$ provided $\mu>\frac{1}{2}$. The precise asymptotics of the generalised Mathieu series was derived in this paper. In particular, $$ S_{\mu ,0} (a;2) = \frac{{\sqrt \pi \Gamma \left( {\mu - \frac{1}{2}} \right)}}{{2\Gamma (\mu )a^{2\mu - 1} }} - \frac{1}{{2a^{2\mu } }} + \frac{{\pi ^\mu }}{{\Gamma (\mu )a^\mu }}e^{ - 2\pi a} (1 + o(1)) $$ as $a\to +\infty$. Consequently, $$ \sum\limits_{n = 0}^\infty {\frac{1}{{((2n + 1)^2 + a^2 )^\mu }}} = \frac{{\sqrt \pi \Gamma \left( {\mu - \frac{1}{2}} \right)}}{{4\Gamma (\mu )a^{2\mu - 1} }} - \frac{{\pi ^\mu }}{{\Gamma (\mu )(2a)^\mu }}e^{ - \pi a} (1 + o(1)) $$ as $a\to +\infty$. Combining this with the exact series representation above, we find $$ \int_0^{ + \infty } {\frac{{t^3 }}{{\sinh t}}J_1 (at)dt} = \frac{{\sqrt 2 \,\pi ^3 }}{{a^{1/2} }}e^{ - \pi a} (1 + o(1)) $$ as $a\to +\infty$. More precise asymptotics can be derived by using more terms in the asymptotic expansion of the generalised Mathieu series which can be found in the paper cited above.

Related Question