Integral $\lim_{\epsilon\to 0^+} \int_{\Lambda/s}^\Lambda \int_{-\infty}^\infty \frac{i}{y^2-x^2+i\epsilon} dydx = \pi\log s$

definite integrals

I am stucked with the following integral
$$\lim_{\epsilon\to 0^+} \int_{\Lambda/s}^\Lambda \int_{-\infty}^\infty \frac{i}{y^2-x^2+i\epsilon} dydx = \pi\log s.$$
Here $s,\Lambda$ are positive constants. This integral is motivated from physics.
How can I evaluate this integral?

Best Answer

Consider first $$\int_{-\infty}^\infty \frac{i}{y^2-x^2+i\epsilon} dy$$ for fixed $x$. We will use the identity $$\frac{1}{f+i\epsilon}=\mathrm{PV}\frac{1}{f}-i\pi\delta(f)\,,$$ where PV denotes the principal value. Noting that $$ \int_{-\infty}^{+\infty} \mathrm{PV}\frac{1}{y^2-x^2}dy= \frac{1}{2x}\int_{-\infty}^{+\infty} \mathrm{PV}\left(\frac{1}{y-x}-\frac{1}{y+x}\right)dy=0 $$ and $$ \delta(y^2-x^2)dy=\frac{1}{2x}\left( \delta(y-x)+\delta(y+x) \right)dy\,, $$ we then have $$\int_{-\infty}^\infty \frac{i}{y^2-x^2+i\epsilon} dy=\frac{\pi}{x}\,.$$ The integral over $x$ then yields $$\pi\int_{\Lambda/s}^{\Lambda}\frac{dx}{x} = \pi\log s\,. $$