Integral $\int_0^1 \frac{(1+t^2)}{1-t^2+t^4}\ln(t)dt$

definite integralsintegration

$$I=\int_0^1 \frac{(1+t^2)}{1-t^2+t^4}\ln(t)dt=-\frac{4}{3}G $$ G is Catalan's constant.

$$I=\int_0^1 \frac{(1+t^2)^2}{(1+t^2)(1-t^2+t^4)}\ln(t)dt=\int_0^1 \frac{(1+t^2)^2}{(1+t^6)}\ln(t)dt$$

Do series expansion:

$$I=\sum_{n=0}^\infty (-1)^n \int_0^1(1+2t^2+t^4)t^{6n}\ln(t)dt$$

Integrate term by term:

$$I=-\sum_{n=0}^\infty (-1)^n\left( \frac{1}{(6n+1)^2}+\frac{2}{(6n+3)^2}+\frac{1}{(6n+5)^2} \right)$$

Re-organize them:

$$I=-\sum_{n=0}^\infty (-1)^n\left( \frac{1}{(6n+1)^2}-\frac{1}{(6n+3)^2}+\frac{1}{(6n+5)^2}\right)-\sum_{n=0}^\infty (-1)^n \frac{3}{(6n+3)^2} $$

The first part is Catalan's constant:

$$I=-G-\sum_{n=0}^\infty (-1)^n \frac{3}{(6n+3)^2}=-G-\frac{3}{9}G=-\frac{4}{3}G$$

Done.

Best Answer

Alternatively, with $ \frac{1+t^2}{1-t^2+t^4}= \frac{1}{1+t^2} +\frac{3t^2}{1+t^6}$

\begin{align} &\int_0^1 \frac{(1+t^2)\ln t}{1-t^2+t^4}dt =\int_0^1 \underset{=-G}{\frac{\ln t}{1+t^2}}dt + \int_0^1 \underset{=-\frac13G}{\frac{3t^2\ln t}{1+t^6} \ \overset{t^3\to t}{dt}}=-\frac43G \end{align}