Integral $\int^{1}_{1/2}\frac{\ln(x)}{1-x}dx$

closed-formdefinite integralsintegrationlogarithms

Evaluate $$\int^{1}_{1/2}\frac{\ln(x)}{1-x}dx$$

Try: Let $$ I =\int^{1}_{1/2}\frac{\ln x}{1-x}dx=\int^{1}_{1/2}\sum^{\infty}_{k=0}x^k\ln(x)dx$$

$$I =\sum^{\infty}_{k=0}\int^{1}_{1/2}x^k\ln(x)dx$$

Using integration by parts, gives: $$I =\sum^{\infty}_{k=0}\frac{\ln(x)x^{k+1}}{k+1}\bigg|^{1}_{1/2}-\sum^{\infty}_{k=0}\frac{x^{k+1}}{(k+1)^2}\bigg|^{1}_{1/2}$$

Can someone help me to solve it?

Best Answer

Applying a substitutiong of $\,\large\frac{1-x}x=t \Rightarrow dx=-\frac{dt}{(1+t)^2}$ gives: $$\int_\frac12^1\frac{\ln x}{x\cdot\frac{1-x}{x}}dx=\int_0^1 \frac{\ln\left({\frac{1}{1+t}}\right)}{t(1+t)}dt$$ $$=\int_0^1 \frac{\ln(1+t)}{1+t}dt-\int_0^1 \frac{\ln(1+t)}{t}dt$$ $$=\frac{\ln^2(1+t)}{2}\bigg|_0^1 - \frac{\pi^2}{12}=\frac{\ln^2 2}{2}-\frac{\pi^2}{12}$$ The second integral can be found here.

Related Question