$\int_0^{\pi/2} \sec^a(t)\,dt= \frac{\sqrt{\pi}}{2\Gamma\left(1-\frac{a}{2}\right)}\Gamma\left(\dfrac{1-a}{2}\right)$

catalans-constantdefinite integralsgamma functionpolygammaspecial functions

Inside the Wolfram Documentation page for the secant function, an identity is given which involves the gamma function, polygamma function, and Catalan's constant.

Notes on documentation page:

Some special functions can be used to evaluate more complicated definite integrals. For example, polygamma and gamma functions and the Catalan constant are needed to express the following integral:
$$\int_0^{\pi/2} \sec^a(t)\,dt= \frac{\sqrt{\pi}}{2\Gamma\left(1-\frac{a}{2}\right)}\Gamma\left(\dfrac{1-a}{2}\right),\quad\text{$\operatorname{Re}(a)<1$} $$

I know that the Gamma function is defined as

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x}\, dx, \quad\text{$\operatorname{Re}(z)>0$}$$

and Catalan's constant can be written as

$$G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} – \frac{1}{3^2} + \frac{1}{5^2} – \frac{1}{7^2} + \frac{1}{9^2} – \cdots$$

but I don't see how this helps. I couldn't find a source in the Wolfram documentation page and couldn't find a duplicate question on Math SE. How did the author of the Wolfram page arrive at this identity?

Best Answer

To derive the identity, it is a straight up application of the Beta function in the form $$\operatorname{B}(m,n) = 2 \int_0^{\frac{\pi}{2}} \cos^{2m - 1} t \sin^{2n - 1} t \, dt.$$

For the secant integral, we have \begin{align} \int_0^{\frac{\pi}{2}} \sec^a t \, dt &= \int_0^{\frac{\pi}{2}} \cos^{-a} t \, dt\\ &= \frac{1}{2} \cdot 2 \int_0^{\frac{\pi}{2}} \cos^{2\left (\frac{1 - a}{2} \right ) - 1} t \sin^{2 \left (\frac{1}{2} \right ) - 1} t \, dt\\ &= \frac{1}{2} \operatorname{B} \left (\frac{1 - a}{2}, \frac{1}{2} \right )\\ &= \frac{1}{2} \frac{\Gamma \left (\frac{1 - a}{2} \right ) \Gamma \left (\frac{1}{2} \right )}{\Gamma \left (\frac{1 - a}{2} + \frac{1}{2} \right )}\\ &= \frac{\sqrt{\pi}}{2 \Gamma \left (1 - \frac{a}{2} \right )} \Gamma \left (\frac{1 - a}{2} \right ), \end{align} for $a < 1$, as required. Here the following well-known results of $$\operatorname{B} (a,b) = \frac{\Gamma (a) \Gamma (b)}{\Gamma (a + b)},$$ together with $\Gamma (\frac{1}{2}) = \sqrt{\pi}$, have been used.

Related Question