Infinitesimal strain tensor in cylindrical coordinates

tensors

How can I obtain the below formulas of infinitesimal strain in cylindrical coordinates using matrix calculation given the first formula? I find it hard to study them because I still don't know how to derive them.

$$
\epsilon_{ij}=\frac{1}{2}\left(u\otimes\nabla+\nabla\otimes u\right)\\
\,\\
\begin{align}
u\otimes\nabla
&=\begin{bmatrix}u_r\\u_{\vartheta}\\u_z\end{bmatrix}\begin{bmatrix}\dfrac{\partial}{\partial r}&\dfrac{1}{r}\dfrac{\partial}{\partial\vartheta}&\dfrac{\partial}{\partial z}\end{bmatrix}\\\\
&=\begin{bmatrix}\dfrac{\partial U_r}{\partial r}&\dfrac{1}{r}\dfrac{\partial U_r}{\partial\vartheta}&\dfrac{\partial U_r}{\partial z}\\\\\dfrac{\partial U_{\vartheta}}{\partial r}&\dfrac{1}{r}\dfrac{\partial U_{\vartheta}}{\partial\vartheta}&\dfrac{\partial U_{\vartheta}}{\partial z}\\\\\dfrac{\partial U_z}{\partial r}&\dfrac{1}{r}\dfrac{\partial U_z}{\partial\vartheta}&\dfrac{\partial U_z}{\partial z}\end{bmatrix}\end{align}
$$

Above, I show my try in deriving the first part of the tensor, but I didn't know how to derive the second part.

\begin{align}
\varepsilon_{ij} &= \frac{1}{2} (U_{i,j} + U_{j,i})\\
\varepsilon_{rr} & = \cfrac{\partial u_r}{\partial r} \\
\varepsilon_{\theta\theta} & = \cfrac{1}{r}\left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) \\
\varepsilon_{zz} & = \cfrac{\partial u_z}{\partial z} \\
\varepsilon_{r\theta} & = \cfrac{1}{2}\left(\cfrac{1}{r}\cfrac{\partial u_r}{\partial \theta} + \cfrac{\partial u_\theta}{\partial r}- \cfrac{u_\theta}{r}\right) \\
\varepsilon_{\theta z} & = \cfrac{1}{2}\left(\cfrac{\partial u_\theta}{\partial z} + \cfrac{1}{r}\cfrac{\partial u_z}{\partial \theta}\right) \\
\varepsilon_{zr} & = \cfrac{1}{2}\left(\cfrac{\partial u_r}{\partial z} + \cfrac{\partial u_z}{\partial r}\right)
\end{align}

Best Answer

There is already an answer to your question in Engineering Stackexchange.

Here's the link: https://engineering.stackexchange.com/a/42241

Related Question